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General

Extending beyond the scalar, linear, discrete time Gaussian models.

I Linear/Non-linear?

I Univariate/Multivariate?

I Discrete time/Continuous time?

I Parametric/Non-parametric?

I Time-invariant/ Time varying?
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New problems
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I Can you �nd a unique linear model?

I Is there a unique non-linear for the data?
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I Can you �nd a unique linear model? Yes

I Is there a unique non-linear for the data? No, several possible
models!
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River �ow and rain fall

This river �ow is a non-linear process. Can you see that by using
the de�nition of a linear model?

Statistical Identification of Storage Models with Application to Stochastic Hydrology 

was introduced in Ozaki (1981b) for Japanese rainfall data 
(see also Ozaki, 1981c), where frequencies 0 1 ,  0 2 ,  and 0 3  
correspond to a yearly periodicity and its higher harmonics 
with six months and four months Periodicity, respectively. 
The model was introduced based on the following observa- 
tions; i.e., 

1. Histograms of the amount of rainfall of most daily rain- 
fall are similar to Gamma distributions. 

2. Histograms of waiting time, i.e., an interval between one 
rainy day to the succeeding rainy day, are distributed like 
exponential distributions. 

3. Periodograms of the sequence of dates when it rains 
show large peaks at the frequency of yearly period and its 
higher harmonics such as six months and four months period. 

We apply the model (23) to the rainfall data (see Figure 5 )  
whch are observed at the Kanna River, Japan, from January 1 ,  

0 
0 

1956, to December 31, 1956. The obtained maximum likeli- 
hood estimates are &0.5547, ,8=13.1561, 2=0.4766, $ I=  
-0.2624, %2=-0.1214, ^b3=0.1169, 81'1.1853, G2Z1.1034 
and $3=-0.7155. The intensity function p(t) with the esti- 
mated parameters is shown in Figure 6 where seasonality is 
clearly seen; the two peaks of the function correspond to the 
two rainy seasons of late June and September in Japan. 

Using,.the estimated rainfall model we can simulate rainfall 
data which are expected to have statistical properties (1,2, and 
3) specified above. This is easily checked by numerical ex- 
periment (see Ozaki, 1981a). Simulated rainfall data obtained 
from the model (23) using the estimated parameters are shown 
in Figure 6, where seasonality of the rainfall may be seen. 
There are some other works on modeling of rainfall time series 
(see references of Stern and Coe, 1984). We note, however, 
that the models are used only for simulation and not for 

0.00 61 .OO 122.00 183.00 244.00 305.00 366.00 

(day) 

0 
0 

I 
0 1  I I I I I I I I I 1 I 1 
0.00 61 .OO 122.00 183.00 244.00 305.00 366.00 

(day) 
(5b) 

Figure 5. Kanna Rainfall and Riverflow Data, from January 1, 1956, to December 31, 1956. 
(5a) Kanna rainfall data; (5b) Kanna riverflow data. 
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Non-linear features

I Limit cycles

I Jumps/Non-Gaussian sudden changes

I Skewed distributions

I Asymmetric responses

I Chaos?

I Bifurcations?

Adding a random component to the system tends to reduce the
latter two.
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Di�erence equations

Di�erence equation representation for ARX/ARMA structure:

yt + a1yt−1 + · · ·+ apyt−p = ut + b1ut−1 + · · ·+ bqut−q

using the delay operator leads to the Transfer Function (which
might be de�ned also for a system not following this linear
di�erence equation)

yt = H(z)ut =
1+ b1z

−1 + · · ·+ bqz
−q

1+ a1z−1 + · · ·+ apz−p
ut

with (the latter equation with a Z-transform interpretation of the
operations)
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ARMA(p,q)-�lter

Process:

yt + a1yt−1 + · · ·+ apyt−p = xt + c1xt−1 + · · ·+ cqxt−q

Transfer Function:

H(z) =
1+ c1z

−1 + · · ·+ cqz
−q

1+ a1z−1 + · · ·+ apz−p

=
z−q(zq + c1z

q−1 + · · ·+ cq)

z−p(zp + a1zp−1 + · · ·+ ap)

Stability: Poles |πi | < 1, i = 1, . . . , p

Invertability: Zeroes |ηi | < 1, i = 1, . . . , q
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Frequency representation

The frequency function is de�ned from the transfer function as

H(e i2πf ) = H(f ), f ∈ (−π, π]

giving a amplitude and phase shift of an input trigonometric signal,
as e.g.

uk = cos(2πfk)

yk = |H(f )| cos(2πfk + arg(H(f )))

|f | ≤ 0.5
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Transfer functions for non-linear systems

I Linear models are often characterised by their transfer function.

I General model: For a given stationary time series {Xt} �nd a
function h such that

h({Xt}) = εt (1)

where εt is a white noise sequence.

I A model is globally invertible if it is possible to compute {Xt}
from {εt} and a given initial value.
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Transfer functions for non-linear systems

Various strategies

I Black box models, such as SETAR, STAR, FAR, BL, Volterra
series or ANNs.

I Grey box models, combining sources of information about the
system to be modelled.

I Using only external information from e.g. physics to describe
the system. This type of white box models are not considered
in the course.

Simple example. A linear model is de�ned as

∞∑
k=−∞

ht,kXt−k = εt . (2)
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Volterra series

Start with causal model

h(Xt ,Xt−1, . . .) = εt (3)

and assume that it is causally invertible

Xt = h′(εt , εt−1, . . .). (4)

We assume h′ is su�ciently regular so that it can be
Taylor-expanded.
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Volterra series

Xt = µ+
∞∑
k=0

gkεt−k +
∞∑
k=0

∞∑
l=0

gklεt−kεt−l (5)

+
∞∑
k=0

∞∑
l=0

∞∑
m=0

gklmεt−kεt−lεt−m (6)

where

µ = h′(0, 0, . . .), gk =
∂h′

∂εt−k
, gkl =

∂2h′

∂εt−k∂εt−l
(7)
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Volterra series

Let Ut be an arbitrary input signal, and de�ne Xt as follows

Xt = µ+
∞∑
k=0

gkUt−k +
∞∑
k=0

∞∑
l=0

gklUt−kUt−l (8)

+
∞∑
k=0

∞∑
l=0

∞∑
m=0

gklmUt−kUt−lUt−m (9)

The transfer function for a linear system is given by the �rst two
terms

Xt = µ+
∞∑
k=0

gkUt−k (10)

The output, when the input is given by Ut = A0e
iω0t is a single

harmonic with the same frequency, scaled by |H(ω0)| and phase
shifted by argH(ω0).
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Volterra series

This is not true for general non-linear systems. We have that

I For an input with frequency ω0, the output will also contain
2ω0, 3ω0, . . .

I For two input frequencies, ω0 and ω1, the output will also
contain frequencies ω0, ω1, ω0 + ω1 and all harmonics of the
frequencies.
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Volterra series

There is no such thing as a transfer function for non-linear systems.
Instead, there is an in�nity sequence of generalized transfer

functions

H1(ω1) =
∞∑
k=0

gke
−iω1k (11)

H2(ω1, ω2) =
∞∑
k=0

∞∑
l=0

gkle
−i(ω1k+ω2l) (12)

H3(ω1, ω2, ω3) =
∞∑
k=0

∞∑
l=0

∞∑
m=0

gklme
−i(ω1k+ω2l+ω3m) (13)

(14)
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SETAR models

De�ne disjoint regions R1, . . . ,Rl , typically Ri = (ri−1, ri ]. The
values r0, . . . , rl are called thresholds.
The SETAR(l , d , k1, . . . , kl) model is de�ned as:

Xt = a
(Jt)
0 +

kJt∑
i=1

a
(Jt)
i Xt−i + ε

(Jt)
t (15)

where

Jt =


1 if Xt−d ∈ R1

2 if Xt−d ∈ R2

...
...

l if Xt−d ∈ Rl

(16)

Note: Similar to linear splines.
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TARSO models

Extends the SETAR model by allowing for external signals Ut ,
which is also the switching variable.
The TARSO(l , d , (k1, k

′
1) . . . , (kl , k

′
l ) model is de�ned as:

Xt = a
(Jt)
0 +

kJt∑
i=1

a
(Jt)
i Xt−i +

k ′
Jt∑

i=1

b
(Jt)
i Ut−i + ε

(Jt)
t (17)

where

Jt =


1 ifUt−d ∈ R1

2 ifUt−d ∈ R2

...
...

l ifUt−d ∈ Rl

(18)
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Indep. Governed AR models (IGAR)

The regime in this class of models is determined by a stochastic
variable Jt . The IGAR(l , d , (k1) . . . , (kl) model is de�ned as:

Xt = a
(Jt)
0 +

kJt∑
i=1

a
(Jt)
i Xt−i + ε

(Jt)
t (19)

where

Jt =


1 with probp1

2 with probp2
...

...

l with probpl

(20)

A particularly popular case appears when the regime variable Jt is
given by a Markov chain. This is the MMAR(l , k1, . . . , kl) models
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MMAR(2,2,2) example

Two AR(2) processes

1 : Xn = 1.1Xn−1 − 0.5Xn−2 + en (21)

2 : Xn = −1.2Xn−1 − 0.5Xn−2 + en (22)

and P =

[
0.95 0.05
0.05 0.95

]
.
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STAR models

Continuous alternative to SETAR (can estimate the thresholds)
The STAR(d , p) model is de�ned as:

Xt = a0 +

p∑
j=1

ajXt−j + I (Xt−d)

b0 +

p∑
j=1

bjXt−j

 (23)

where I (x) is a smooth function, typically a distribution function
I (x) = Φ

( x−µ
σ

)
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GARCH model

A popular model in Economics and/or Finance is the GARCH model

Xt = σtZt (24)

σ2
t = ω + αX 2

t−1 + βσ2
t−1 (25)

where E[Z ] = 0, Var[Z ] = 1

Turns out that this is an ARMA model for X 2
t . Proof: Introduce a

new white noise sequence ηt = X 2
t − σ2

t

Many extensions based on SETAR or STAR!
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Bilinear models

The bilinear BL(p, q,m, k) model is de�ned as

Xt +

p∑
j=1

ajXt−j =

q∑
j=0

cjet−j +
m∑
i=1

k∑
j=1

bijXt−iet−j (26)

Autocorrelation is identical to a linear model, but the qualitative
properties of the bilinear model is very di�erent (the bilinear term
can cause temporary "explosions")
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Random coe�cient model

The random coe�cient AR model (RCAR) is de�ned as

Xt =
k∑

i=1

(βi + Bi (t))Xt−i (27)

where Bi (t) are iid random variables.
The stability of the RCAR models is generally worse than that of
the corresponding AR models.
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Comparison between models

We have simulated the model

Xn = 3.9Xn−1 (1− Xn−1) + Un(Xn−1) (28)

where Un is constrained to prevent the process from leaving the
space χ = [0, 1].
We used NEstimation = 1 000 observations to estimate the models
and NEval = 1 000 observations to evaluate the �tted models.
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Comparison between models

Data and �tted linear model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
A

R
=

0.
07

08
65

Erik Lindström - erikl@maths.lth.se General topics in non-linear time series analysis



Intro Linear Models Transfer fcns Parametric non-linear modelsSETAR TARSO IGAR STAR Other Comparion

Comparison between models

SETAR (top) and STAR (below). The STAR model can
approximate this model rather well, compared to the linear and
SETAR models.
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