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Wolds’ Theorem

Wold’s Theorem: Let Xt be a zero mean second order stationary
process. Then Xt can be expressed in the form

Xt = Ut + Vt

where

{Ut} and {Vt} are uncorrelated processes.

{Ut} is non-deterministic with a one-sided representation
Ut =

∑

∞

i=0 aiηt−i where a0 = 1 and
∑

∞

i=1 a2
i < ∞. Besides {ηt} is

an uncorrelated sequence and uncorrelated with {Vt}.

The sequences {ai} and {ηt} are uniquely determined.

{Vt} is deterministic.
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Gaussianity and Linearity

Therefore any Guassian process conforms to a linear process. Note
that the converse is not necessarily true, i.e. not every linear process
is Gaussian.
Nevertheless, the theorem reveals a strong connection between
linearity and Gaussianity.
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Joint Cumulants

Joint Cumulants: The k’th order joint cumulant for random variables
X1,X2, ...,Xk is defined by

C{X1,X2, ...,Xk} =
∑

ν

(−1)p−1(p − 1)!µν1µν2 ...µνp

where µνi is the mean of the products of X’s corresponding to the
partition νi.
Remark:

C{X1,X2} = cov{X1,X2}
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Moment and Cumulant Generating Functions

Moment Generating Function: The moment generating function for
the random variables X1,X2, ...,Xk is defined by

M(θ1, ..., θk) = E{exp(θ1X1 + ...+ θkXk)}

Cumulant Generating Function: The cumulant generating function
K(θ1, ..., θk) is defined by

K(θ1, ..., θk) = log M(θ1, ..., θk)

Some tedious (but straight forward) algebra shows that

∂

∂θ1
...

∂

∂θk
M(θ1, ..., θk)|θi=0 = E{X1...Xk}

and
∂

∂θ1
...

∂

∂θk
K(θ1, ..., θk)|θi=0 = C{X1...Xk}
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Joint Cumulants for a Stationary Process

Consider a stationary stochastic process {Xt} and define

C(τ1, τ2, ..., τk−1) = C{Xt,Xt+τ1 ,Xt+τ2 , ...,Xt+τk−1}

This is the generalization of the autocovariance function.

Henrik Madsen (Adv. TS Analysis) Lecture Notes September 2016 7 / 33



Contents

Poly-spectrum for a Stationary Process

Now the k-th order poly-spectrum for the process {Xt} denoted by
fX(ω1, ω2, ..., ωk−1) is defined by the Fourier transform of
C{Xt,Xt+τ1 ,Xt+τ2 , ...,Xt+τk−1}, i.e.

fX(ω1, ω2, ..., ωk−1) =

( 1
2π )

k−1 ∑∞

τ1=−∞
...

∑

∞

τk−1=−∞

C(τ1, τ2, ..., τk−1) exp{−i(ω1τ1 + ω2τ2 + ...+ ωk−1τk−1)}
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Poly-Spectrum as a Measure of Non-Gaussianity

Consider a stationary Gaussian stochastic process {Xt}. Then all of its
poly-spectra of order higher than 2 vanish.
Proof: Assume that the random varibles X1,X2, ...,Xk, k ≥ 2, have a
Gaussian joint distribution with mean m and covariance Σ. The
characteristic function of the random varibles is found to be

exp{imT t −
1
2

tTΣt}

Thus the moment generating function is given by

exp{mTθ +
1
2
θTΣθ}

This shows that the cumulant generating function is quadratic in θ and
its derivatives with order higher than two vanish. This completes the
proof.
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Bispectrum
Bispectrum and Gaussianity

The third order poly-spectrum f (ω1, ω2) of a stationary stochastic
process is called bispectrum.
The conclusion is that the bispectrum of a stationary Gaussian process
is identically zero. This provides a basis for test for Gaussianity.
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Bispectra and Linearity

Suppose that the two stationary processes {Xt} and {Yt} are related
through

Xt =
∞
∑

i=0

hiYt−i

Then
fX(ω1, ω2) = H(−ω1 − ω2)H(ω1)H(ω2)fY(ω1, ω2)

where H(ω) is the transfer function of the filter with impulse response
{hi}.
Proof: Follows from the definition of bispectrum.
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Bispectra and Linearity (cont.)

Now assume that a stationary process {Xt} has the linear
representation

Xt =
∞
∑

i=−∞

aiǫt−i

where {ǫt} is a sequence of independent, zero mean, identically
distributed random variables. Denoting the third moment of ǫt by µ3,
we have

(
µ3

2π
)2 =

fX(ω1, ω2)

H(ω1)H(ω2)H(−ω1 − ω2)

and denoting the second moment of ǫt by µ2,

fX(ω) =
µ2

2π
|H(ω)|2
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Bispectra and Linearity (cont.)

The result is that under the linearity hypothesis, the quantity

|fX(ω1, ω2)|
2

|fX(−ω1 − ω2)fX(ω1)fX(ω2)|

is a constant for all ω1 and ω2.

This provides a basis for tests in linearity. Furthermore, if the
process is Gaussian, this constant is identically zero for all
frequency pairs.

Therefore, the estimation of the bispectrum from observed data is
a fundamental step towards testing in linearity and Gaussianity.
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Example: Bispectrum of Non-Gaussian ARMA(1,1)
Proces

Consider the ARMA(1,1) process

Xt + aXt−1 = ǫt + bǫt−1 (1)

where {ǫt} is a sequence of identically distributed independent
Γ(k, β)-distributed random variables.

The frequency response function is easily found as (see Madsen
(2008))

H(ω) =
1 + be−iω

1 + ae−iω (2)
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Non-Gaussian ARMA(1,1) (cont.)

When we include the above in equation on a previous slide we get

fX(ω1, ω2) = fǫ(ω1, ω2)
P(b, ω1, ω2)

P(a, ω1, ω2)
(3)

where the real part is given by

Re[P(x, ω1, ω2)] = 1 + x3 + (x2 + x) cos(ω1) + (4)

(x2 + x) cos(ω2) + (x2 + x) cos(ω1 + ω2) (5)

and the imaginary part by

Im[P(x, ω1, ω2)] = (x2 − x) sin(ω1) + (x2 − x) sin(ω2) +

(x − x2) sin(ω1 + ω2).
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Non-Gaussian ARMA(1,1) (cont.)

As {ǫt} is a sequence of independent random variables it follows
directly from the definition of the bispectrum that

fǫ(ω1, ω2) =
µ3

(2π)2 , (6)

where µ3 = m(0, 0). Since ǫt is Gamma distributed

ft(ω1, ω2) =
2kβ3

(2π)2 (7)

since µ3 = 2kβ3 for X ∼ Γ(k, β).
The theoretical bispectrum for the ARMA(1,1) process given by a = 0.5
and b = −0.3 is shown on the next slides.
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Real part of bispectrum
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Figure : Real part of the theoretical bispectrum for an ARMA(1,1) process
with Gamma distributed noise
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Imaginary part of bispectrum
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Figure : Imaginary part of the theoretical bispectrum for an ARMA(1,1)
process with Gamma distributed noise
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Estimation of third order order cumulant

Let X1,X2, ...,XN be realizations from a stationary (at least up to third
order) process {Xt} with third central moment C(τ1, τ2). The natural
estimate of C(τ1, τ2) will be

Ĉ(τ1, τ2) =
1
N

∑N−γ
t=1

(Xt − X̄)(Xt+τ1 − X̄)(Xt+τ2 − X̄)
τ1, τ2 > 0
γ = max(0, τ1, τ2)
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Estimation of third order periodogram
Raw Bispectrum

Then from the definition of bispectrum, we introduce the estimate
I(ω1, ω2):

I(ω1, ω2) =
1

N(2π)2 {
∑N

1 (Xt − X̄) exp(−iω1t)}

×{
∑N

1 (Xt − X̄) exp(−iω2t)}
×{

∑N
1 (Xt − X̄) exp(−i(ω1 + ω2)t)}

This estimate is often called the third order periodogram. Exactly as in
the periodogram case, this estimate is asymptotically unbiased but not
consistent. Thus, it must be smoothed by choosing some suitable
window.
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Consistent estimates of bispectra (Summary)

See Madsen (2008) Table 7.2 on page 199. Choose a window and
set M = 1 to obtain λ0(·).

Compute the three dimensional window
λ0(τ1, τ2) = λ0(τ1)λ0(τ2)λ0(τ1 − τ2).
Choose M, noting that

If it is possible, M should be less than the square root of the sample
size, N.
It should be smaller than the value of M used in estimating the
spectral density.
Once for some selection of kernel X, the optimal bandwidth MX is
found the M value for others, say, Parzen window MPar is calculated
according to

MPar =
MR,Parzen

MR,X
MX (8)

where MR,· denotes the value of MR for the corresponding window
selection.
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Example: Estimation of Bispectra

Consider a time series of length N = 500 which is generated by
the ARMA(1,1) process with Gamma distributed noise considered
in the previous theoretical example.

Figure 4 and 6 show the estimated bispectrum with M = 10 and
M = 18, respectively. In both cases a Parzen window is used.
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Example: Estimation of Bispectra
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Figure : Real part of estimated bispectrum, Parzen window, N = 500, M = 10
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Figure : Imaginary part of estimated bispectrum, Parzen window, N = 500,
M = 10
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Example: Estimation of Bispectra
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Figure : Real part of estimated bispectrum, Parzen window, N = 500, M = 18
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Figure : Imaginary part of estimated bispectrum, Parzen window, N = 500,
M = 18
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Parametric estimates

This concludes our discussion of non-parametric methods for
estimating the bispectrum of a process. If the data generating
mechanism is known a priori, eg. a bilinear model, it is also possible to
explicitly compute the bispectrum for that model and evaluate the result
for some estimated parameter values. This is a parametric method.
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Tests using the bispectrum for Gaussianity

Here we have to test the null hypothesis H0: f (ωi, ωj) = 0 for all ωi, ωj.
However, as a result of the following symmetry relations:

f (ω1, ω2) = f (ω2, ω1) (9)

= f (ω1,−ω1 − ω2) (10)

= f (−ω1 − ω2, ω2) (11)

= f ∗(ω2, ω1) (12)

it will be enough to evaluate the bispectrum at the points confined to
the area with boundaries:







ω2 − ω1 = 0
ω2 +

1
2ω1 = π

ω1 = 0
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Tests for Gaussianity
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Tests for Gaussianity

Our aim is to estimate a (complex) P × 1 vector η where the i’th
element is the bispectrum of the i’th node. In order to estimate η, we
estimate the bispectrum for the points corresponding to fine grid (see
Figure 7). These estimates are then gathered in n vectors (each vector
having P elements), each denoted by ξ(i), i = 1, ..., n. Now estimate:

η̂ =
1
n

n
∑

i=1

ξ̂(i) (13)

A =
n

∑

i=1

[ξ(i) − η̂][ξ(i) − η̂]T (14)

Σ̂ξ =
A
n

(15)
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Test for Gaussianity

Under the null hypothesis that f (ωi, ωj) = 0 for all ωi, ωj, the statistic F1

defined by

F1 =
2(n − p)

2p
T2 (16)

T2 = nη̂TA−1η̂ (17)

is distributed as a central F distribution with (2P, 2(n − p)) degrees of
freedom. The latter is the complex generalization of Hotelling’s T2 test
(see ??).
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Test for Linearity

This test is very similar to the previous one, with the following
modifications. The vector ξ(i) is modified to Y(i). The elements of the
vector are now

|f (ωi, ωj)|
2

f (ωi)f (ωj)f (ωi + ωj)
(18)

instead of f (ωi, ωj). Denote the counter-part of the vector η by Z. Now
estimate:

Ẑ =
1
n

n
∑

i=1

Y(i) (19)

S =
n

∑

i=1

(Y(i) − Ẑ)(Y(i) − Ẑ)T (20)

Σ̂Y =
S
n

(21)
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Test for Linearity

Define the statistic F2 by

F2 =
n − Q

Q
T2 (22)

T2 = nβTS−1
B β (23)

β = BẐ (24)

SB = BΣ̂YBT (25)

where Q = P − 1 and B is a Q × P matrix defined by










1 −1 0 . . . 0
0 1 −1 . . . 0

...
0 0 . . . 1 −1











Under the null hypothesis, the statistic F2 is F distributed with
(Q, n − Q) degrees of freedom.
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