Space-time downscaling
under error in computer model output

Veronica J. Berrocal

University of Michigan
Department of Biostatistics

joint work with Alan E. Gelfand, David M. Holland, Peter Guttorp and Peter Craigmile
Introduction

- In many environmental disciplines data come from two sources: monitoring networks and numerical models.

- **Numerical models** are deterministic mathematical models used to predict environmental spatio-temporal processes.

- Describe the underlying physical and chemical processes via partial differential equations.

- Equations solved via numerical methods by discretizing space and time.

- Predictions are given in terms of averages over grid cells.
Introduction

- Sparse locations
- Missing data
- Essentially, true value

- Large spatial domains
- No missingness
- Calibration concerns

Observed average temperature
Year 2007

Climate model output for average temperature
Year 2007

Veronica J. Berrocal | Space-time data downscaling under error
Introduction

- Sparse locations
- Missing data
- Essentially, true value

- Large spatial domains
- No missingness
- Calibration concerns
Our goal

- Fuse the two sources of data
- Obtain improved predictions at point level by downscaling the computer model output
- Explicitly address the difference in spatial scale
 - Outputs from numerical models are given in terms of predictions over grid cells
 - Observations from monitors are collected at points
- Calibrate the numerical model
 - Correct outputs from numerical models
Previous approaches

Approaches for downscaling include:

- Atmospheric sciences approaches
 - Algorithmic

- Model-based approaches
 - Wikle and Berliner (2005)
 - Bayesian Melding of Fuentes and Raftery (2005)
Downscaler: main idea

Observed average temperature
Year 2007

Climate model output for average temperature
Year 2007

To each point s in the domain S with observation $Y(s)$ we associate the numerical model output at grid cell B, $X(B)$, where $s \in B$:

Veronica J. Berrocal | Space-time data downscaling under error
Downscaler: main idea

To each point \(s \) in the domain \(S \) with observation \(Y(s) \) we associate the numerical model output at grid cell \(B \), \(X(B) \), where \(s \in B \):

\[
Y(s) \iff X(B)
\]
To each point s in the domain S with observation $Y(s)$ we associate the numerical model output at grid cell B, $X(B)$, where B is such that $s \in B$:

$$Y(s) \iff X(B)$$
Downscaler

- Time t is fixed. $Y(s)$ observation at point s, $X(B)$ numerical model output at grid cell B. For s in B:

$$Y(s) = \tilde{\beta}_0(s) + \tilde{\beta}_1(s)X(B) + \epsilon(s) \quad \epsilon(s) \overset{\text{ind}}{\sim} N(0, \tau^2)$$

with $\tilde{\beta}_i(s) = \beta_i + \beta_i(s)$, $i=0,1$.

- $\beta_0(s)$ and $\beta_1(s)$ correlated mean-zero GP.
Downscaler

- Time t is fixed. $Y(s)$ observation at point s, $X(B)$ numerical model output at grid cell B. For s in B:

$$Y(s) = \tilde{\beta}_0(s) + \tilde{\beta}_1(s)X(B) + \varepsilon(s) \quad \varepsilon(s) \sim N(0, \tau^2)$$

with $\tilde{\beta}_i(s) = \beta_i + \beta_i(s)$, $i=0,1$.

- $\beta_0(s)$ and $\beta_1(s)$ correlated mean-zero GP.

- Extension to space-time: For s in B and for each t

$$Y(s, t) = \tilde{\beta}_0(s, t) + \tilde{\beta}_1(s, t)X(B, t) + \varepsilon(s, t) \quad \varepsilon(s, t) \sim N(0, \tau^2)$$

with $\tilde{\beta}_i(s, t) = \beta_{it} + \beta_i(s, t)$, $i=0,1$.

- Temporal dependence in β_{it} and $\beta_i(s, t)$: dynamic or independent
Downscaler

- Very flexible and natural hierarchical Bayesian model specification
- Driven by true station data rather than uncalibrated model output
- Computationally feasible also for large spatial domains
- Allows local calibration of the numerical model output
- Endows the spatial process $Y(s)$ with a non-stationary covariance structure
- Straightforward downscaling prediction at an unmonitored sites
- Better predictive performance than other methods (geostatistical and model-based)
Extending the downscaler

- Propose a neighbor-based extension of the downscaler model
 - accounts for information in the numerical model output at neighboring grid cells
 - accounts for uncertainty in the association \(Y(s) \leftrightarrow X(B) \) with \(s \) in \(B \)
Extending the downscaler

- Propose a neighbor-based extension of the downscaler model
 - accounts for information in the numerical model output at neighboring grid cells
 - accounts for uncertainty in the association \(Y(s) \xleftarrow{} X(B) \) with \(s \) in \(B \)

- We call the new downscaler a **smoothed downscaler using spatially-varying random weights**
Static setting
Smoothed downscaler with spatially-varying weights

- Downscaler: \(Y(s) = \tilde{\beta}_0(s) + \tilde{\beta}_1(s)X(B) + \epsilon(s) \quad s \in B \)

We don't use the numerical model \(X(B) \) output directly anymore. For each \(s \), we introduce a new regressor \(\tilde{X}(s) \) and we assume that \(Y(s) = \tilde{\beta}_0(s) + \beta_1 \tilde{X}(s) + \epsilon(s) \)

where \(\tilde{X}(s) = \sum_{g_k=1}^{g} w_k(s)X(B_k) \), and \(w_k(s) \) random and spatially-varying.

Let \(r_k, k = 1, \ldots, g \) be the centroids of numerical model grid cells \(B_k, k = 1, \ldots, g \), then

\[
\tilde{X}(s) = \frac{K(s - r_k; \psi) \cdot \exp(Q(r_k))}{\sum_{g_l=1}^{g} K(s - r_l; \psi) \cdot \exp(Q(r_l))}
\]

- \(Q(\cdot) \) mean-zero GP with variance \(\sigma^2_Q \), exponential covariance function and decay parameter \(\phi_Q \).
- \(K(s - r_k; \psi) = \exp(-\psi \| s - r_k \|) \)
Smoothed downscaler with spatially-varying weights

- **Downscaler:** \(Y(s) = \tilde{\beta}_0(s) + \tilde{\beta}_1(s)X(B) + \varepsilon(s) \quad s \in B \)

- We don't use the numerical model \(X(B) \) output directly anymore. For each \(s \), we introduce a new regressor \(\tilde{X}(s) \) and we assume that

\[
Y(s) = \tilde{\beta}_0(s) + \beta_1 \tilde{X}(s) + \varepsilon(s) \quad \varepsilon(s) \overset{\text{ind}}{\sim} N(0, \tau^2)
\]

where \(\tilde{X}(s) = \sum_{k=1}^{g} w_k(s)X(B_k) \), and \(w_k(s) \) random and spatially-varying.
Smoothed downscaler with spatially-varying weights

- **Downscaler:** \(Y(s) = \tilde{\beta}_0(s) + \tilde{\beta}_1(s)X(B) + \epsilon(s) \quad s \in B \)

- We don't use the numerical model \(X(B) \) output directly anymore. For each \(s \), we introduce a new regressor \(\tilde{X}(s) \) and we assume that

\[
Y(s) = \tilde{\beta}_0(s) + \beta_1 \tilde{X}(s) + \epsilon(s) \quad \epsilon(s) \overset{\text{ind}}{\sim} N(0, \tau^2)
\]

where \(\tilde{X}(s) = \sum_{k=1}^{g} w_k(s)X(B_k) \), and \(w_k(s) \) random and spatially-varying.

Let \(r_k, k = 1, \ldots, g \) be the centroids of numerical model grid cells \(B_k, k = 1, \ldots, g \), then

\[
w_k(s) := \frac{\mathcal{K}(s - r_k; \psi) \cdot \exp(Q(r_k))}{\sum_{l=1}^{g} \mathcal{K}(s - r_l; \psi) \cdot \exp(Q(r_l))}
\]
Smoothed downscaler with spatially-varying weights

- **Downscaler:** \[Y(s) = \tilde{\beta}_0(s) + \tilde{\beta}_1(s)X(B) + \varepsilon(s) \quad s \in B \]

- We don't use the numerical model \(X(B) \) output directly anymore. For each \(s \), we introduce a new regressor \(\tilde{X}(s) \) and we assume that

 \[
 Y(s) = \tilde{\beta}_0(s) + \beta_1 \tilde{X}(s) + \varepsilon(s) \quad \varepsilon(s) \overset{\text{ind}}{\sim} N(0, \tau^2)
 \]

where \(\tilde{X}(s) = \sum_{k=1}^{g} w_k(s)X(B_k) \), and \(w_k(s) \) random and spatially-varying.

Let \(r_k, k = 1, \ldots, g \) be the centroids of numerical model grid cells \(B_k, k = 1, \ldots, g \), then

\[
 w_k(s) := \frac{\mathcal{K}(s - r_k; \psi) \cdot \exp(Q(r_k))}{\sum_{l=1}^{g} \mathcal{K}(s - r_l; \psi) \cdot \exp(Q(r_l))}
\]

- \(Q(\cdot) \) mean-zero GP with variance \(\sigma_Q^2 \), exponential covariance function and decay parameter \(\phi_Q \).
- \(\mathcal{K}(s - r_k; \psi) = \exp(-\psi\|s - r_k\|) \).
Smoothed downscaler with spatially-varying random weights
Smoothed downscaler with spatially-varying random weights

To each point s in the domain S with observation $Y(s)$ we associate $\tilde{X}(s)$, where $\tilde{X}(s) = \sum_{k=1}^{g} w_k(s) x(B_k)$.

Veronica J. Berrocal
Space-time data downscaling under error
Smoothed downscaler with spatially-varying random weights

Observed average temperature
Year 2007

Borlänge
Stockholm

Climate model output for average temperature
Year 2007

To each point \(s \) in the domain \(S \) with observation \(Y(s) \) we associate \(\tilde{X}(s) \), where

\[
\tilde{X}(s) = \sum_{k=1}^{g} w_k(s) x(B_k)
\]

Veronica J. Berrocal
Space-time data downscaling under error
Smoothed downscaler with spatially-varying random weights

Observed average temperature
Year 2007

Climate model output for average temperature
Year 2007

To each point s in the domain S with observation $Y(s)$ we associate $\tilde{X}(s)$, where $\tilde{X}(s) = \sum_{k=1}^{g} w_k(s) x(B_k) Y(s) \rightarrow \tilde{X}(s)$.
Smoothed downscaler with spatially-varying random weights

To each point s in the domain S with observation $Y(s)$ we associate $\tilde{X}(s)$, where $\tilde{X}(s) = \sum_{k=1}^{g} w_k(s) x(B_k)$.

$Y(s) \rightarrow \tilde{X}(s)$
Spatio-temporal setting
Smoothed downscaler with spatially-varying weights

- $Y(s, t)$ observations at s and time t, $X(B, t)$ numerical model output at grid cell B and time t:

$$Y(s, t) = \tilde{\beta}_0(s, t) + \beta_1, t \tilde{X}(s, t) + \varepsilon(s, t) \quad \varepsilon(s, t) \overset{\text{ind}}{\sim} N(0, \tau^2)$$

with $\tilde{\beta}_0(s, t) = \beta_0 + \beta_0(s, t)$, $\tilde{X}(s, t) = \sum_{k=1}^{g} w_k(s, t) X(B_k, t)$, and $w_k(s, t)$ random and varying both in space and time.
Smoothed downscaler with spatially-varying weights

- $Y(s, t)$ observations at s and time t, $X(B, t)$ numerical model output at grid cell B and time t:

$$Y(s, t) = \tilde{\beta}_0(s, t) + \beta_1, t \tilde{X}(s, t) + \varepsilon(s, t) \quad \varepsilon(s, t) \overset{\text{ind}}{\sim} \mathcal{N}(0, \tau^2)$$

with $\tilde{\beta}_0(s, t) = \beta_0 + \beta_0(s, t)$, $\tilde{X}(s, t) = \sum_{k=1}^{g} w_k(s, t) X(B_k, t)$, and $w_k(s, t)$ random and varying both in space and time.

$$w_k(s, t) := \frac{\mathcal{K}(s - r_k; \psi) \cdot \exp(Q(r_k, t))}{\sum_{l=1}^{g} \mathcal{K}(s - r_l; \psi) \cdot \exp(Q(r_l, t))}$$
Smoothed downscaler with spatially-varying weights

- \(Y(s, t) \) observations at \(s \) and time \(t \), \(X(B, t) \) numerical model output at grid cell \(B \) and time \(t \):

\[
Y(s, t) = \tilde{\beta}_0(s, t) + \beta_{1,t} \tilde{X}(s, t) + \varepsilon(s, t) \quad \varepsilon(s, t) \overset{\text{ind}}{\sim} N(0, \tau^2)
\]

with \(\tilde{\beta}_0(s, t) = \beta_{0t} + \beta_0(s, t) \), \(\tilde{X}(s, t) = \sum_{k=1}^g w_k(s, t) X(B_k, t) \), and \(w_k(s, t) \) random and varying both in space and time.

\[
w_k(s, t) := \frac{\mathcal{K}(s - r_k; \psi) \cdot \exp(Q(r_k, t))}{\sum_{l=1}^g \mathcal{K}(s - r_l; \psi) \cdot \exp(Q(r_l, t))}
\]

- Temporal dependence in \(\beta_{it} \), \(i = 0, 1 \), \(\beta_0(s, t) \) and \(Q(r_k, t) \): either (i) independent in time, or (ii) dynamic.
Application

- Climate model output for southern Sweden: the Rossby Centre Regional Climate model RCA3 at 12-km grid resolution ($g=2,640$).
- 17 monitoring sites used for fitting the model and 2 sites used for validation: Borlange and Goteborg
- Missing data: 28.5%
- Time-varying parameters: independent in time
Scatterplot of observed yearly average temperature at the 17 training sites versus the climate model output at the corresponding grid cells.

Correlation coefficient: $R = 0.80$
Observations, climate model output and predictions

- We will look at observations and predictions at the 17 training sites by the climate model output and the downscaler model with spatially-varying random weights.
Observations, climate model output and predictions

- Observed yearly average temperature at the 17 training sites (black line), climate model output (blue line), downscaler predictions (red line)
Observations, climate model output and predictions

- Observed yearly average temperature at the 17 training sites (black line), climate model output (blue line), downscaler predictions (red line)
Mean absolute error at the 17 training sites: climate model output (blue line), downscaler (red line)
Results

- Predictive performance at the 17 training sites, averaged over space and time.
- Results are in degree Celsius.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSPE</th>
<th>MAPE</th>
<th>Coverage 95% PI</th>
<th>Avg. length 95% PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional climate model</td>
<td>1.90</td>
<td>0.64</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Smoothed downscaler with spatially-varying weights</td>
<td>0.47</td>
<td>0.33</td>
<td>92.5%</td>
<td>7.02</td>
</tr>
</tbody>
</table>
Observations, climate model output and predictions

- Observed yearly average temperature at **Goteborg** (black line), climate model output (blue line), downscaler predictions (red line). The shaded grey area indicates the 95% prediction interval.
• Observed yearly average temperature at **Borlange** (black line), climate model output (blue line), downscaler predictions (red line). The shaded grey area indicates the 95% prediction interval.
Results

- Results are in degree Celsius.

<table>
<thead>
<tr>
<th>City</th>
<th>Method</th>
<th>MSPE</th>
<th>MAPE</th>
<th>Coverage 95% PI</th>
<th>Avg. length 95% PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goteborg</td>
<td>Regional climate model</td>
<td>2.17</td>
<td>1.34</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Smoothed downscaler with spatially-varying weights</td>
<td>2.17</td>
<td>1.32</td>
<td>96.7%</td>
<td>5.87</td>
</tr>
<tr>
<td>Borlange</td>
<td>Regional climate model</td>
<td>3.56</td>
<td>1.05</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Smoothed downscaler with spatially-varying weights</td>
<td>1.56</td>
<td>0.92</td>
<td>93.8%</td>
<td>5.49</td>
</tr>
</tbody>
</table>
Predictions: year 1994

Climate model output
Year 1994

Downscaler
Year 1994

Veronica J. Berrocal
Space-time data downscaling under error
Predictions: year 1994

Downscaler–Climate model output
Year 1994

Veronica J. Berrocal Space-time data downscaling under error
Predictions: year 2007

Climate model output
Year 2007

Downscaler
Year 2007

Veronica J. Berrocal
Space-time data downscaling under error
Conclusions

• Presented a method to downscale the output from numerical models that accounts for uncertainty in the association of a site to its putatively associated grid cells.

• In our application, predictions are less biased than the predictions from a regional climate model.

• Currently, we are comparing the merits of this approach versus those of an upscaling approach.