Problem 1. Passing to the complex coordinate we have that
\[u(z) = \frac{(z - \bar{z})}{2iz\bar{z}} = \frac{1}{2i} \left(\frac{1}{z} - \frac{1}{\bar{z}} \right). \]
From this formula we see that \(u \) is the imaginary part of the function \(f(z) = -1/z \).
By a result from the course we conclude that \(u \) is harmonic in \(\Omega = \mathbb{C} \setminus \{0\} \). \(\square \)

Problem 2. By a well-known formula for a finite geometric sum we have that
\[p(z) - p(a) = \frac{z^n - a^n}{z - a} = \sum_{k=0}^{n-1} z^k a^{n-1-k} \]
for \(z \neq a \). Passing to the limit letting \(z \to a \) we conclude that the complex derivative \(p'(a) \) exists and equals \(na^{n-1} \). \(\square \)

Problem 3. The searched for Laurent series expansion is
\[k(z) = \frac{1}{(1 - z)^2} = -\sum_{m=-\infty}^{-2} (m + 1) z^m \]
for \(|z| > 1 \). \(\square \)

Problem 4. Set
\[J(a) = \int_0^{2\pi} \frac{1}{a + \cos \theta} \, d\theta \]
for \(a > 1 \). Differentiating under the integral we have that
\[J'(a) = -\int_0^{2\pi} \frac{1}{(a + \cos \theta)^2} \, d\theta = -I(a) \]
for \(a > 1 \). In Gamelin Section VII.3 it is shown that
\[J(a) = \frac{2\pi}{\sqrt{a^2 - 1}} \]
for \(a > 1 \). By differentiation we have
\[J'(a) = -\frac{2\pi a}{(a^2 - 1)\sqrt{a^2 - 1}}, \]
so that \(I(a) = 2\pi a/((a^2 - 1)\sqrt{a^2 - 1}) \) for \(a > 1 \). \(\square \)

Problem 5. Let \(f \) be an entire function satisfying (*) and consider its Taylor expansion
\[f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \mathbb{C}. \]
From the Cauchy estimates and the maximum principle we have that
\[|a_n|r^n \leq \max_{|z|=r}|f(z)| \leq r + 1/r \]
for \(r > 0 \) and \(n = 0, 1, 2, \ldots \). Letting \(r \to +\infty \) we see that \(a_n = 0 \) for \(n \geq 2 \).
It remains to evaluate condition (*) on an affine function: \(f(z) = az + b \) with \(a, b \in \mathbb{C} \). It is straightforward to check that for such an \(f \) we have that
\[
\max_{|z|=r} |f(z)| = |a|r + |b|
\]
for \(r > 0 \). We are thus led to determine under what conditions on \(a, b \in \mathbb{C} \) the inequality
\[
(1) \quad |a|r + |b| \leq r + 1/r
\]
holds true for all \(r > 0 \). Letting \(r \to +\infty \) in (1) we see that \(|a| \leq 1 \). For \(|a| \leq 1 \) we have that (1) holds for \(r > 0 \) if and only if
\[
|b| \leq \inf_{r>0} \left((1 - |a|)r + 1/r \right).
\]
A calculation shows that
\[
\inf_{r>0} \left((1 - |a|)r + 1/r \right) = 2\sqrt{1 - |a|}
\]
for \(|a| \leq 1 \). We conclude that an entire function \(f \) satisfies (*) if and only if it has the form \(f(z) = az + b \) for some \(a, b \in \mathbb{C} \) such that \(|a| \leq 1 \) and \(|b| \leq 2\sqrt{1 - |a|} \). \(\square \)

Problem 6. Assume that the function \(f \) is not vanishing identically in \(\Omega \). Then there exists a disc \(B(a, r) \subset \Omega \) with positive radius \(r > 0 \) such that \(f(z) \neq 0 \) for \(z \in B(a, r) \). By division we see that \(g(z) = 0 \) for \(z \in B(a, r) \). Since \(g \) is analytic we conclude from connectedness of \(\Omega \) that \(g(z) = 0 \) for all \(z \in \Omega \) (see Gamelin Section V.7). \(\square \)

Remark. In algebraic terminology the result of Problem 6 says that the commutative ring of analytic functions \(H(\Omega) \) has no zero divisors when \(\Omega \) is connected.