On Random Bernoulli Convolutions

Tomas Persson

Preprints in Mathematical Sciences
2008:7

Lund Institute of Technology
Lund University

Centre for Mathematical Sciences
Mathematics
On random Bernoulli convolutions

Tomas Persson

May 25, 2008

With one figure

Abstract

We study the distribution of the random series \(\sum_{k=0}^{\infty} \pm \lambda_k^k \) where \(\lambda_k \) are independently and uniformly distributed in \((\lambda - \epsilon, \lambda + \epsilon)\). It is proved that the distribution of the series has density in \(L_2 \) and that the \(L_2 \) norm of the density does not grow faster than \(1/\sqrt{\epsilon} \).

1 Introduction and Statements of Results

Let \(\lambda \in (\frac{1}{2}, 1) \). The distribution of the random variable \(Y_\lambda \), defined by

\[
Y_\lambda = (1 - \lambda) \sum_{k=0}^{\infty} \vartheta_k \lambda^k,
\]

where the random variables \(\vartheta_k \) are independent and identically distributed according to \(P(\vartheta_k = +1) = P(\vartheta_k = -1) = 1/2 \), is denoted by \(\nu_\lambda \). We have chosen the constant \((1 - \lambda)\) in front of the sum in order to have \(\nu_\lambda \) with the support \([-1, 1]\) for all \(\lambda \). This distribution was studied by Erdös in [1] and [2]. It is known that \(\nu_\lambda \) is absolutely continuous with respect to Lebesgue measure for almost all \(\lambda \in (\frac{1}{2}, 1) \), see [7] and [4], and that if \(\lambda^{-1} \) is a Pisot number, then \(\nu_\lambda \) is singular with respect to Lebesgue measure, [1]. It is also known that for \(\lambda = 1/\sqrt{7} \), \(k \in \mathbb{N} \), and for some algebraic integers, \(\nu_\lambda \) is absolutely continuous with respect to Lebesgue measure, [3], [9]. There is a nice survey of the subject in [5].

For \(\varepsilon > 0 \), we study the distribution of the random variable

\[
Y_{\lambda, \varepsilon} = (1 - \lambda - \varepsilon) \sum_{k=0}^{\infty} \vartheta_k \lambda^k,
\]

where the random variables \(\lambda_k \) are uniformly and independently distributed in \((\lambda - \varepsilon, \lambda + \varepsilon)\), and the random variables \(\vartheta_k \) are independent, independent of \(\lambda_k \) and distributed as above. We let \(\nu_{\lambda, \varepsilon} \) denote the distribution of the random variable \(Y_{\lambda, \varepsilon} \). The coefficient \(1 - \lambda - \varepsilon \) in the definition of \(Y_{\lambda, \varepsilon} \) is chosen in order that the measure \(\nu_{\lambda, \varepsilon} \) has support in \([-1, 1]\).
It is not hard to see that the distribution $\nu_{\lambda, \varepsilon}$ approximates ν_{λ}. More precisely, one easily proves the following theorem.

Theorem 1. The measure $\nu_{\lambda, \varepsilon}$ converges weakly to the measure ν_{λ} as $\varepsilon \to 0$.

Since ν_{λ} is absolutely continuous with respect to Lebesgue measure for almost all λ between $\frac{1}{2}$ and 1, but not for all λ, it is natural to ask how regular $\nu_{\lambda, \varepsilon}$ is. We will prove that $\nu_{\lambda, \varepsilon}$ has density in L_2 and that the L_2 norm of the density can not grow faster that $1/\sqrt{\varepsilon}$. Let L denote the Lebesgue measure on \mathbb{R}. The following theorems will be proved.

Theorem 2. For any $\delta > 0$ there exists a constant c such that for any $\varepsilon > 0$ there is a set $E \subset \left(\frac{1}{2} + \varepsilon, 0.6491 - \varepsilon\right)$ with $\mathcal{L}(\left(\frac{1}{2} + \varepsilon, 0.6491 - \varepsilon\right) \setminus E) < \delta$, such that the measure $\nu_{\lambda, \varepsilon}$ satisfies $\|\nu_{\lambda, \varepsilon}\|_2 < c$ for any $\lambda \in E$.

Theorem 3. If $\lambda \in \left(\frac{1}{2}, 1\right)$, then the density of $\nu_{\lambda, \varepsilon}$ is in L_2 and $\|\nu_{\lambda, \varepsilon}\|_2 < c/\sqrt{\varepsilon}$, for all $0 < \varepsilon < \max\{\lambda - \frac{1}{2}, 1 - \lambda\}$, where $c = \frac{4\varepsilon}{\sqrt{\lambda^2 - \frac{1}{4} - (2\lambda + 1)}}$.

Theorem 2 is proved in Section 2. The proof is only a minor modification of the proof in Peres and Solomyak’s article [4]. The proof of Theorem 3 is in Section 3. It is based on the ideas of transversal intersection of unstable curves in Tsuji’s article [8].

2 Proof of Theorem 2

Let $Q = [-1, 1]^3$ and $m \in \mathbb{N}$. We partition the cube Q into the parallelepipeds $\{Q_{0,k}, Q_{1,k}\}_{k=0}^{2^m-1}$, where

$$
Q_{0,k} = \{ (x, y, z) \in Q : y < 0, -1 + k2^{-m+1} \leq z < -1 + (k + 1)2^{-m+1} \},
$$

$$
Q_{1,k} = \{ (x, y, z) \in Q : y \geq 0, -1 + k2^{-m+1} \leq z < -1 + (k + 1)2^{-m+1} \}.
$$

Define $f_{\lambda, \varepsilon, m} : Q \to Q$ by

$$
f_{\lambda, \varepsilon, m} : (x, y, z) \mapsto (\lambda_0(z)x + a(y, z), 2y + b(y), 2^mz + c(z)),
$$

where $\lambda_0(z)$ and $a(y, z)$, $b(y)$, $c(z)$ are defined by

$$
\lambda_0(z) = \lambda + 2^m\varepsilon(z - (-1 + (k + \frac{1}{2})2^{-m+1})),
$$

$$
a(y, z) = \begin{cases}
-1 + \lambda_0(z) & \text{if } (x, y, z) \in Q_{0,k}, \\
1 - \lambda_0(z) & \text{if } (x, y, z) \in Q_{1,k}.
\end{cases}
$$

$$
b(y) = \begin{cases}
1 & \text{if } (x, y, z) \in Q_{0,k}, \\
-1 & \text{if } (x, y, z) \in Q_{1,k}.
\end{cases}
$$

$$
c(z) = 2^m - 2k - 1, \quad (x, y, z) \in Q_{0,k} \cup Q_{1,k}.
$$

There is a picture of the map $f_{\lambda, \varepsilon, 2}$ in Figure 1.

For later use we define the sets

$$
Q_0 = \bigcup_{k=0}^{2^m-1} Q_{0,k}, \quad Q_1 = \bigcup_{k=0}^{2^m-1} Q_{1,k}.
$$
Let \(\nu \) be the normalised Lebesgue measure on \(Q \). The measures

\[
\mu_{\lambda, \varepsilon, m, n} = \frac{1}{n} \sum_{k=0}^{n-1} \nu \circ f_{\lambda, \varepsilon, m}^{-k}
\]

converges weakly to an srb-measure \(\mu_{\lambda, \varepsilon, m} \) as \(n \to \infty \). The measure \(\mu_{\lambda, \varepsilon, m} \) is clearly ergodic, since if \(p = (x_0, y_0, z_0) \in Q \), then the stable manifold of \(p \) is

\[
\{ (x, y, z) \in Q : y = y_0, z = z_0 \},
\]

and the unstable manifold of \(p \) is

\[
\{ (x, y, z) \in Q : x = x_0 \}.
\]

Moreover, the projection of \(\mu_{\lambda, \varepsilon, m} \) onto the first coordinate is a measure \(\nu_{\lambda, \varepsilon, m} \). More precisely, if \(E \subset [-1, 1] \) is a measurable set, then \(\nu_{\lambda, \varepsilon, m}(E) = \mu_{\lambda, \varepsilon, m}(E \times [-1, 1] \times [-1, 1]) \), defines a measure on \([-1, 1]\).

The measure \(\nu_{\lambda, \varepsilon, m} \) is the distribution of a powerseries \((1 - \lambda - \varepsilon) \sum_{k=0}^{\infty} \partial \lambda_k \)
where \(\lambda_k \) are uniformly distributed in \((\lambda - \varepsilon, \lambda + \varepsilon)\), but not independent. However, the measure \(\nu_{\lambda, \varepsilon, m} \) converges weakly to \(\nu_{\lambda, \varepsilon} \) as \(m \to \infty \).

Let \(A \) be a set of \(2^{m+1} \) elements. We denote the elements in \(A \) in such a way that \(A = \{ (0, 0), (0, 1), \ldots, (0, 2^m - 1), (1, 0), (1, 1), \ldots, (1, 2^m - 1) \} \). Put \(A_0 = \{ (0, 0), (0, 1), \ldots, (0, 2^m - 1) \} \) and \(A_1 = \{ (1, 0), (1, 1), \ldots, (1, 2^m - 1) \} \).

Let \(\Sigma_0 = A^{\mathbb{N} \cup \{0\}} \). If \(p \) is a point in \(Q \) then there is a unique sequence \(\rho_0(p) = \{ \rho_0(p)_k \}_{k=0}^{\infty} \) in \(\Sigma_0 \) such that

\[
f_{\lambda, \varepsilon, m}(p) \in Q_{\rho_0(p)_k}, \quad k = 0, 1, \ldots.
\]

The map \(\rho_0 : Q \to \Sigma_0 \) is not injective.

We can transfer the measures \(\mu_{\lambda, \varepsilon, m} \) and \(\nu_{\lambda, \varepsilon, m} \) to measures \(\mu_{\Sigma_0} \) and \(\nu_{\Sigma_0} \) on \(\Sigma_0 \) by \(\mu_{\Sigma_0} = \mu_{\lambda, \varepsilon, m} \circ \rho_0^{-1} \) and \(\nu_{\Sigma_0} = \nu_{\lambda, \varepsilon, m} \circ \rho_0^{-1} \).
We let Σ denote the natural extension of Σ_0. That is, Σ is the set of all two sided infinite sequences such that any one sided infinite subsequence of a sequence in Σ is a sequence in Σ_0. The measure μ_{Σ_0} defines an ergodic measure μ_{Σ} on Σ in a natural way. If $\eta: \Sigma \to \Sigma_0$ is defined by $\eta(\{i_k\}_{k \in \mathbb{Z}}) = \{i_k\}_{k \in \mathbb{N} \cup \{0\}}$, then $\mu_{\Sigma_0}(E) = \mu_{\Sigma}(\eta^{-1}(E))$. Hence, if a function φ: $\Sigma_0 \to \mathbb{R}$ is μ_{Σ_0}-measurable, then the function $\varphi \circ \eta$: $\Sigma \to \mathbb{R}$ is μ_Σ-measurable. The map φ_0: $Q \to \Sigma_0$ can be extended to a map φ: $Q \to \Sigma$ such that $\varphi(\sigma(a)) = f_{\lambda, e, m}(\varphi(a))$ holds for any sequence $a \in \Sigma$.

Let $B(x, r) = [x - r, x + r]$ be the interval of radius r around x. The limit

$$D(x, \lambda, \varepsilon) = \liminf_{r \to 0} \frac{\nu_{\lambda, e, m}(B(x, r))}{2r}$$

is the density of the measure $\nu_{\lambda, e}$ if it exists. If

$$\int_{-1}^{1} D(x, \lambda, \varepsilon) \, d\nu_{\lambda, e}(x) < \infty,$$

then the density $D(x, \lambda, \varepsilon)$ is in L_2. We prove that

$$\int_{\frac{1}{2} + \varepsilon + \delta}^{1 - \varepsilon - \delta} \int_{-1}^{1} D(x, \lambda, \varepsilon) \, d\nu_{\lambda, e}(x) \, d\lambda < C,$$

for any $\varepsilon > \delta > 0$ and some constant C which is independent of m. This implies that $D(x, \lambda, \varepsilon)$ is in L_2 for almost all $\lambda \in (\frac{1}{2} + \varepsilon, 1 - \varepsilon)$, which implies the statement of Theorem 2.

By Fatou's lemma, we get the following inequality.

$$I = \int_{\frac{1}{2} + \varepsilon + \delta}^{1 - \varepsilon - \delta} \int_{-1}^{1} D(x, \lambda, \varepsilon) \, d\nu_{\lambda, e, m}(x) \, d\lambda$$

$$= \int_{\frac{1}{2} + \varepsilon + \delta}^{1 - \varepsilon - \delta} \liminf_{r \to 0} \frac{\nu_{\lambda, e, m}(B(x, r))}{2r} \, d\nu_{\lambda, e}(x) \, d\lambda$$

$$\leq \liminf_{r \to 0} \frac{1}{2r} \int_{\frac{1}{2} + \varepsilon + \delta}^{1 - \varepsilon - \delta} \int_{-1}^{1} \nu_{\lambda, e, m}(B(x, r)) \, d\nu_{\lambda, e, m}(x) \, d\lambda$$

$$= \liminf_{r \to 0} \frac{1}{2r} \int_{\frac{1}{2} + \varepsilon + \delta}^{1 - \varepsilon - \delta} \int_{-1}^{1} I_{\{z: |z-x| < r\}}(y) \, d\nu_{\lambda, e, m}(y) \, d\nu_{\lambda, e, m}(x) \, d\lambda,$$

where I denotes the indicator function.

Since $\nu_{\lambda, e, m}$ is the projection of $\mu_{\lambda, e, m}$ to the first coordinate we can rewrite the last line as integrals over the measure $\mu_{\lambda, e, m}$ to get the estimate

$$I \leq \liminf_{r \to 0} \frac{1}{2r} \int_{\frac{1}{2} + \varepsilon + \delta}^{1 - \varepsilon - \delta} \int_{Q} I_{\{z: |z_1-x_1| < r\}}(y) \, d\mu_{\lambda, e, m}(y) \, d\mu_{\lambda, e, m}(x) \, d\lambda,$$

where x_1 and z_1 denotes the first coordinate of the points $x, z \in Q$.

We can transference the two innermost integrals to integrals over \(\Sigma\) in order to get the estimate

\[
I \leq \liminf_{r \to 0} \frac{1}{2r} \int_{\frac{1}{2} + \varepsilon + \delta} \int_{\Sigma} I_\epsilon \left[\left| \varphi(a_1) - \varphi(b_1) \right| < r \right] (b) \ d\mu_{\Sigma}(b) \ d\mu_{\Sigma}(a) \ d\lambda
\]

\[
= \liminf_{r \to 0} \frac{1}{2r} \int_{\frac{1}{2} + \varepsilon + \delta} \int_{\Sigma \times \Sigma} I_\epsilon \left[\left| \varphi(a_1) - \varphi(b_1) \right| < r \right] \ d(\mu_{\Sigma} \times \mu_{\Sigma}) \ d\lambda
\]

The product space \(\Sigma \times \Sigma\) can be written as

\[
\Sigma \times \Sigma = \bigcup_{n=0}^{\infty} \bigcup_{a_{-n} \cdots a_0} \bigcup_{b_{-n} \cdots b_0} [a_{-n} \cdots a_0] \times [b_{-n} \cdots b_0].
\]

Hence

\[
I \leq \liminf_{r \to 0} \frac{1}{2r} \int_{\frac{1}{2} + \varepsilon + \delta} \sum_{n=0}^{\infty} \sum_{a_{-n} \cdots a_0} \sum_{b_{-n} \cdots b_0} H_{a_{-n} \cdots a_0, b_{-n} \cdots b_0} \ d\lambda,
\]

where

\[
H_{a_{-n} \cdots a_0, b_{-n} \cdots b_0} = \int_{[a_{-n} \cdots a_0] \times [b_{-n} \cdots b_0]} I_\epsilon \left[\left| \varphi(a_1) - \varphi(b_1) \right| < r \right] \ d(\mu_{\Sigma} \times \mu_{\Sigma}).
\]

We can change order of integration to obtain

\[
I \leq \liminf_{r \to 0} \frac{1}{2r} \sum_{n=0}^{\infty} \sum_{a_{-n} \cdots a_0} \sum_{b_{-n} \cdots b_0} J_{a_{-n} \cdots a_0, b_{-n} \cdots b_0},
\]

where

\[
J_{a_{-n} \cdots a_0, b_{-n} \cdots b_0} = \int_{[a_{-n} \cdots a_0] \times [b_{-n} \cdots b_0]} \int_{\frac{1}{2} + \varepsilon + \delta} I_\epsilon \left[\left| \varphi(a_1) - \varphi(b_1) \right| < r \right] \ d\lambda \ d(\mu_{\Sigma} \times \mu_{\Sigma})(a, b)
\]

If \(a\) and \(b\) are two sequences in \(\Sigma\) with \(\varphi(a) = (x_a, y_a, z_a)\) and \(\varphi(b) = (x_b, y_b, z_b)\), then

\[
x_a = \sum_{k=0}^{\infty} \lambda_k^k (A_{0} - 1)(-1)^{a - k - 1}.
\]
If \(a \) and \(b \) are such that for \(-n < k < 0\) it holds that either \(a_k, b_k \in A_0 \) or \(a_k, b_k \in A_1 \), and \(a_{-n} \in A_0 \) and \(b_{-n} \in A_1 \), then
\[
x_a - x_b = \sum_{k=-n}^{\infty} \lambda_k^0 (\alpha_k - 1) ((-1)^{n+1} - (-1)^{n+k}).
\]

By the methods in Solomyak's paper [7], it follows [6] that this power series has a transversality property, for \(\lambda \in (0.5, 0.6491 - \varepsilon) \). One can use this to estimate that
\[
\int_{\frac{1}{2} + \varepsilon + \delta}^{0.6491 - \varepsilon - \delta} I\{ (a, b) : |\rho(a)_1 - \rho(b)_1| < r \} \, d\lambda < C (\frac{1}{2} + \varepsilon + \delta)^{-n},
\]
where \(C \) is a constant. Hence
\[
J_{a_{-n} \ldots a_0, b_{-n} \ldots b_0} \subseteq \int_{[a_{-n} \ldots a_0] \times [b_{-n} \ldots b_0]} C (\frac{1}{2} + \varepsilon + \delta)^{-n} \, d(\mu_x \times \mu_y) = C \frac{4^{n+2} 4^{2n}}{2} (\frac{1}{2} + \varepsilon + \delta)^{-n} \to 0
\]
which implies that
\[
I \leq \liminf_{r \to 0} \frac{1}{2r} \sum_{n=0}^{\infty} \sum_{a_{-n} \ldots a_0 \in A_0 \text{ or } a_{-n} \ldots a_0 \in A_1 \text{, } k > -n} \sum_{b_{-n} \ldots b_0 : a_k \in A_0 \text{ or } a_k \in A_1 \text{ and } b_k \in A_1 \text{ or } b_k \in A_1} C \frac{4^{n+2} 4^{2n}}{2} (\frac{1}{2} + \varepsilon + \delta)^{-n} = C \frac{4^{n+2} 4^{2n}}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2} \frac{1}{2} + \varepsilon + \delta \right)^n < \infty,
\]
which finishes the proof.

3 Proof of Theorem 3

We will use the same notation as in the proof of Theorem 2. We first note that the \(L_2 \) norm of the density of \(\nu_{\lambda, e, m} \) is not larger than twice that of the density of \(\nu_{\lambda, e, m} \). Indeed, if \(\mu_{\lambda, e, m} \) is absolutely continuous with respect to Lebesgue measure, then so is \(\nu_{\lambda, e, m} \). If \(h_{\nu_{\lambda, e, m}}(x) \) and \(h_{\mu_{\lambda, e, m}}(x, y, z) \) denotes the density of \(\nu_{\lambda, e, m} \) and \(\mu_{\lambda, e, m} \) respectively, then by Lyapunov's inequality
\[
\| \nu_{\lambda, e, m} \|_2^2 = \int_{-1}^{1} h_{\nu_{\lambda, e, m}}(x)^2 \, dx = 32 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} h_{\mu_{\lambda, e, m}}(x, y, z) \frac{dy}{2} \frac{dz}{2} \frac{dx}{2} \leq 32 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} h_{\mu_{\lambda, e, m}}(x, y, z) \frac{dy}{2} \frac{dz}{2} \frac{dx}{2} = 4 \| \mu_{\lambda, e, m} \|_2^2.
\]
This proves that if $\mu_{\lambda, \epsilon, m}$ has density in L_2, then so has $\nu_{\lambda, \epsilon, m}$, and
\[
\|\nu_{\lambda, \epsilon, m}\|_2 \leq 2\|\mu_{\lambda, \epsilon, m}\|_2.
\] (1)
We will therefore bound the L_2 norm of $\mu_{\lambda, \epsilon, m}$. For this purpose will need the following transversality property.

Lemma 3.1. The cones $C_p = \{ (a, b, c) \in T_p Q : |\frac{a}{c}|, |\frac{b}{c}| < \frac{2^m + 2\epsilon}{2^m - \lambda - \epsilon} \}$, $p \in Q$ defines a family of unstable cones, that is $d_p(\bar{f}_{\lambda, \epsilon, m})(C_p) \subset C_{\bar{f}_{\lambda, \epsilon, m}}(p)$.

Moreover, if m is sufficiently large then the following is true. If $\gamma_1 \subset Q, \gamma_2 \subset Q, \gamma_2$ are two line segments with tangents in C_p, such that, $\gamma_1 \notin A_0$ and $\gamma_2 \notin A_1$, then if $f_{\lambda, \epsilon, m}(\gamma_1)$ and $f_{\lambda, \epsilon, m}(\gamma_2)$ intersect, and if $(a_1, b_1, 1)$ and $(a_2, b_2, 1)$ are tangents to $f_{\lambda, \epsilon, m}(\gamma_1)$ and $f_{\lambda, \epsilon, m}(\gamma_2)$ respectively, it holds $|a_1 - a_2| \geq C_{\lambda, \epsilon, m}2^{-(k-1)m}(\lambda - \epsilon)^{k-1} \epsilon$, where
\[
C_{\lambda, \epsilon, m} = \frac{2}{\lambda + \epsilon} - \frac{4(\lambda + \epsilon)}{2^m - \lambda - \epsilon} > 0.
\]

Proof. One easily checks that C_p defines a family of unstable cones: The Jacobian of $f_{\lambda, \epsilon, m}$ is
\[
\begin{bmatrix}
\lambda_0 & 0 & 2^{m+1}(x \pm 1)\epsilon \\
0 & 2 & 0 \\
0 & 0 & 2^m
\end{bmatrix}.
\]
If $(a, b, c) \in C_p$, then
\[
d_p(f_{\lambda, \epsilon, m})(a, b, c) = \begin{bmatrix}
\lambda_0 a + 2^{m+1}(x \pm 1)\epsilon c \\
2b \\
2^m c
\end{bmatrix}.
\]
The estimates
\[
\frac{|\lambda_0 a + 2^{m+1}(x \pm 1)\epsilon c|}{2^m c} \leq \frac{\lambda_0 |a|}{2^m} + 4\epsilon \leq \frac{\lambda + \epsilon}{2^m} \frac{2^{m+2} \epsilon}{2^m - \lambda - \epsilon} + 4\epsilon = \frac{2^{m+2} \epsilon}{2^m - \lambda - \epsilon},
\]
\[
\frac{|2b|}{2^m c} \leq \frac{2^{m+2} \epsilon}{2^m - \lambda - \epsilon},
\]
proves that $d_p(f_{\lambda, \epsilon, m})(a, b, c) \subset C_{\bar{f}_{\lambda, \epsilon, m}}(p)$.

Let us now prove the later part of the lemma. Recall that
\[
Q_0 = \bigcup_{k=0}^{2^m-1} Q_{0,k}, \quad Q_1 = \bigcup_{k=0}^{2^m-1} Q_{1,k}.
\]
Take $p = (x, y, z) \in Q$. Then for $(a, b, 1) \in C_p,$
\[
p \in Q_0 \Rightarrow d_q(\bar{f}_{\lambda, \epsilon, m}):(a, b, 1) \mapsto 2^m \left(\frac{\lambda_0 a + (x + 1)\epsilon}{2^m}, \frac{b}{2^m-1}, 1 \right),
\]
\[
p \in Q_1 \Rightarrow d_q(\bar{f}_{\lambda, \epsilon, m}):(a, b, 1) \mapsto 2^m \left(\frac{\lambda_0 a + (x - 1)\epsilon}{2^m}, \frac{b}{2^m-1}, 1 \right).
\]
Assume that \(p = (x_p, y_p, z_p) \in Q_0 \), and \(q = (x_q, y_q, z_q) \in Q_1 \), are such that \(f_{\lambda, \varepsilon, m}(p) = f_{\lambda, \varepsilon, m}(q) = (x, y, z) \). Then \(x_p = \frac{x_p + (1 - \lambda)z_0}{\lambda} \), \(x_q = \frac{x_q + (1 - \lambda)z_0}{\lambda} \), and

\[
\begin{align*}
d_p(f_{\lambda, \varepsilon, m})(C_p) & \subset \{ c(a, b, 1) : \frac{x_p + 1}{\lambda + \varepsilon} - \frac{\lambda + \varepsilon}{2m} - \frac{2m + 2}{\lambda - \varepsilon} < a < \frac{x_p + 1}{\lambda + \varepsilon} + \frac{\lambda + \varepsilon}{2m} - \frac{2m + 2}{\lambda - \varepsilon} \}, \\
d_q(f_{\lambda, \varepsilon, m})(C_q) & \subset \{ c(a, b, 1) : \frac{x_q + 1}{\lambda + \varepsilon} - \frac{\lambda + \varepsilon}{2m} - \frac{2m + 2}{\lambda - \varepsilon} < a < \frac{x_q + 1}{\lambda + \varepsilon} + \frac{\lambda + \varepsilon}{2m} - \frac{2m + 2}{\lambda - \varepsilon} \},
\end{align*}
\]

Hence if \((a_p, b_p, 1) \in d_p(f_{\lambda, \varepsilon, m})(C_p) \) and \((a_q, b_q, 1) \in d_q(f_{\lambda, \varepsilon, m})(C_q) \) then

\[
|a_p - a_q| > \frac{2}{\lambda + \varepsilon} - \frac{8\varepsilon(\lambda + \varepsilon)}{2m - \lambda - \varepsilon} = C_{\lambda, \varepsilon, m}\varepsilon,
\]

where

\[
C_{\lambda, \varepsilon, m} = \frac{2}{\lambda + \varepsilon} - \frac{8(\lambda + \varepsilon)}{2m - \lambda - \varepsilon}.
\]

The constant \(C_{\lambda, \varepsilon, m} \) is positive for sufficiently small \(\varepsilon \) provided that

\[
\frac{2}{\lambda} - \frac{8\lambda}{2m - \lambda} > 0 \iff 2m > 4\lambda^2 + \lambda,
\]

which is satisfied if \(m \) is sufficiently large. This proves the lemma in the case \(k = 1 \). The statement for \(k > 1 \) follows by iteration of \(d(f_{\lambda, \varepsilon, m}) \). \[\square \]

The rest of the proof follows Tsujii’s article [8]. For any \(r > 0 \) we define the bilinear form \(\langle \cdot, \cdot \rangle_r \) of signed measures on \(\mathbb{R} \) by

\[
\langle \varphi_1, \varphi_2 \rangle_r = \int_{\mathbb{R}} \varphi_1(B_r(x))\varphi_2(B_r(x)) \, dx,
\]

where \(B_r(x) = [x - r, x + r] \). One easily proves, see [8], that if

\[
\lim \inf_{r \to \infty} \frac{1}{r^2} \langle \varphi, \varphi \rangle_r < \infty,
\]

then the measure \(\varphi \) has density in \(L_2(\mathbb{R}) \) and

\[
\|\varphi\|_2^2 \leq \lim \inf_{r \to \infty} \frac{1}{r^2} \langle \varphi, \varphi \rangle_r,
\]

where \(\|\varphi\|_2 \) denotes the \(L_2 \) norm of the density of \(\varphi \).

Let \(\mu_\varepsilon \) denote the conditional measure of \(f_{\lambda, \varepsilon, m} \), conditioned on the set \(R_\varepsilon := \{ (a, b, c) \in Q : b = b_0, c = z \} \), where \(b_0 \) is some number such that \(-1 < b_0 < 1 \). Note that \(\mu_\varepsilon \) is independent of \(b_0 \) almost everywhere, so we can forget about \(b_0 \).
Consider the quantity \(f(r) = \frac{1}{r} \int_{-1}^{1} \langle \mu_x, \mu_z \rangle \, dx \). We observe that the measure \(\eta \) on \([-1, 1]\), defined by \(\eta(E) = \mu_{x, \varepsilon, m}([-1, 1] \times [-1, 1] \times E) \) for any Borel set \(E \), is proportional to Lebesgue measure on \([-1, 1]\). This implies that

\[
\|\mu_{x, \varepsilon, m}\|_2^2 = \int_{-1}^{1} \|\mu_z\|_2^2 \, dz \leq \liminf_{r \to 0} f(r).
\]

We will therefore estimate \(f(r) \).

By the invariance of \(\mu_{b, \varepsilon, m} \) it follows that

\[
\mu_z = 2^{-(m+1)} \sum_{a \in A} \mu_{f^{-a}} \circ f^{-a},
\]

where \(f^{-a} \) denotes the inverse of the function \(f_{b, \varepsilon, m} \) restricted to the cylinder \([a]\). By \(f^{-a}(z) \), we mean the unique number \(z_a \) such that there exists numbers \(x_a, y_a, x, y \) with \((x_a, y_a, z_a) \in [a]\) and \(f_{b, \varepsilon, m}(x_a, y_a, z_a) = (x, y, z) \).

The formula (4) allow us to rewrite \(f(r) \) as

\[
f(r) = \frac{1}{r^2} 2^{2(m+1)} \sum_{a, b \in A} \int_{-1}^{1} \langle \mu_{f^{-a}} \circ f^{-a}, \mu_{f^{-b}} \circ f^{-b} \rangle \, dz.
\]

For fixed \(a \) and \(b \) it holds

\[
\langle \mu_{f^{-a}} \circ f^{-a}, \mu_{f^{-b}} \circ f^{-b} \rangle_r \leq \langle \mu_{f^{-a}} \circ f^{-a}, \mu_{f^{-b}} \circ f^{-b} \rangle_f \leq \left(\lambda + \epsilon \right) \langle \mu_{f^{-a}} \circ f^{-a}, \mu_{f^{-b}} \circ f^{-b} \rangle_{\varepsilon, m} \leq \left(\lambda + \epsilon \right) \frac{1}{\pi^2} \left(\lambda + \epsilon \right) \frac{1}{\pi^2} \leq \frac{1}{\pi^2} \frac{1}{\pi^2}.
\]

Moreover

\[
\langle \mu_{f^{-a}} \circ f^{-a}, \mu_{f^{-b}} \circ f^{-b} \rangle_r \leq \int 2rI_{\{0 \leq |\xi| < |\eta| \leq 2r \}}(s, t) \, d\mu_{f^{-a}} \circ f^{-a}(s) \, d\mu_{f^{-b}} \circ f^{-b}(t)
\]

\[
= \int 2rI_{\{0 \leq |\xi| < |\eta| \leq 2r \}}(s, t) \, d\mu_{f^{-a}} \circ f^{-a}(s) \, d\mu_{f^{-b}} \circ f^{-b}(t)
\]
If \(a \) and \(b \) are such that there exists a \(k \) such that either \(a \in A_0 \), \(b \in A_1 \) or \(a \in A_1 \), \(b \in A_0 \), then by Lemma 3.1 and (7) we get that

\[
\int_{-1}^{1} (\mu_{f^{-a}(z)} \circ f^{-a} \cdot \mu_{f^{-b}(z)} \circ f^{-b}) \, dz \\
\leq \int 2r \{ z : |\rho^{-1}(\cdots c_{\cdot 2} a \varphi_0(z)) - \rho^{-1}(\cdots d_{2} b \varphi_0(z))| < 2r \} \\
\leq 8r^2 \frac{1}{C_{\lambda, \varepsilon, m}},
\]

and so since there are at most \(2^{2(m+1)} \) pairs \(a, b \) such that either \(a \in A_0 \), \(b \in A_1 \) or \(a \in A_1 \), \(b \in A_0 \), we get that

\[
\sum_{a \in A_0, b \in A_1 \text{ or } a \in A_1, b \in A_0} \int_{-1}^{1} (\mu_{f^{-a}(z)} \circ f^{-a} \cdot \mu_{f^{-b}(z)} \circ f^{-b}) \, dz \leq \frac{8r^2}{C_{\lambda, \varepsilon, m}} 2^{2(m+1)}.
\]

For the case that \(a, b \in A_0 \) or \(a, b \in A_1 \) we use (6) to estimate that

\[
\sum_{a, b \in A_0 \text{ or } a, b \in A_1} (\mu_{f^{-a}(z)} \circ f^{-a} \cdot \mu_{f^{-b}(z)} \circ f^{-b}) \leq (\lambda + \varepsilon) 2^m \sum_{a} (\mu_{f^{-a}(z)} \circ f^{-a}) \frac{r}{\lambda - \varepsilon}.
\]

Now, (5) and the last two estimates implies

\[
f(r) \leq \frac{8}{C_{\lambda, \varepsilon, m}} + 2^{-2(m+1)} (\lambda + \varepsilon) 2^m \frac{1}{r^2} \sum_{a} \int_{-1}^{1} (\mu_{f^{-a}(z)} \circ f^{-a}) \frac{r}{\lambda - \varepsilon} \, dz \\
= \frac{8}{C_{\lambda, \varepsilon, m}} + 2^{-2(m+1)} \frac{\lambda + \varepsilon}{(\lambda - \varepsilon)^2} 2^m \frac{1}{(r^2)^2} \sum_{a} 2^m \int_{a} (\mu_{a} \circ \mu_{a}) \frac{r}{\lambda - \varepsilon} \, dz \\
= \frac{8r^2}{C_{\lambda, \varepsilon, m}} + 2^{-2}(\lambda - \varepsilon)^{-2} \left(\frac{\lambda + \varepsilon}{\lambda - \varepsilon} \right) f \left(\frac{r}{\lambda - \varepsilon} \right).
\]

Hence

\[
\frac{f(r)}{r^2} \leq \frac{8}{C_{\lambda, \varepsilon, m}} \sum_{n=0}^{\infty} (2(\lambda - \varepsilon))^{-2n} \left(\frac{\lambda + \varepsilon}{\lambda - \varepsilon} \right)^n \\
= \frac{8}{C_{\lambda, \varepsilon, m}} (\lambda - \varepsilon)^2 - \frac{1}{4} \frac{\lambda + \varepsilon}{\lambda - \varepsilon}.
\]

By (3) we thus have

\[
\|\mu_{\varepsilon, m}\|_2 \leq \frac{\varepsilon_m}{\sqrt{\varepsilon}}
\]
with
\[c_m = \sqrt{\frac{8}{(\lambda - \epsilon)^2} - \frac{\lambda + \epsilon}{\lambda - \epsilon} \left(\frac{2}{\lambda + \epsilon} - \frac{4(\lambda + \epsilon)}{2m - \lambda - \epsilon} \right)^{-1}}. \]

By (1) we have
\[\| \mathcal{Y}_{\lambda, \epsilon, m} \|_2 \leq 2 \| \mathcal{Y}_{\lambda, \epsilon, m} \|_2 \leq \frac{c_m}{\sqrt{\epsilon}}. \]

Letting \(m \to \infty \) we find that
\[\| \mathcal{Y}_{\lambda, \epsilon} \|_2 \leq \frac{c}{\sqrt{\epsilon}}. \]

with
\[c = 4 \sqrt{\frac{(\lambda^2 - \epsilon^2)(\lambda - \epsilon)}{(\lambda - \epsilon)^2 - \frac{\lambda + \epsilon}{4} \lambda - \epsilon}} \leq \frac{4 \lambda \sqrt{\lambda}}{\sqrt{\lambda^2 - \frac{1}{4} - (2\lambda + 1) \epsilon}}. \]
References

Tomas Persson, Centre for Mathematical Sciences, Box 118, SE-22100 Lund, Sweden tomasp@maths.lth.se, http://www.maths.lth.se/~tomasp