Preserved quantities

In a system of the form

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= F(x)
\end{align*}
\]

where \(x, y \in \mathbb{R}^d \), and \(F(x) = -\nabla V(x) = -\left(\frac{\partial V}{\partial x_1}(x), \frac{\partial V}{\partial x_2}(x), \ldots \right) \)

for some scalar function \(V \), the energy

\[E(x, y) = \frac{1}{2} \| \dot{x} \|^2 + V(x) \]

\[= \frac{1}{2} (\dot{x}, \dot{x}) + V(x) \]

is preserved:

\[\dot{E}(x, y) = (\ddot{x}, \dot{x}) + (\nabla V(x), \dot{x}) \]

\[= (\ddot{x} - F(x), \dot{x}) = 0 \]

Example. Pendulum

\[V(x) = -gml \cos x. \]

Suppose \(gml = 1 \).

Then

\[E(x, y) = \frac{1}{2} y^2 - g \sin x. \]
Level sets of \(E(x,y) = \frac{1}{2} y^2 - \cos x \)

A so-called heteroclinic orbit:

An orbit \(g(t,p) \) with

\[
\lim_{t \to +\infty} g(t,p) = q_1 \\
\lim_{t \to -\infty} g(t,p) = q_2
\]

and \(q_1 \) and \(q_2 \) are different fixed points.

If \(q_1 = q_2 \) and are fixed points, then the orbit is called a homoclinic orbit.

Example Duffin equation

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= x - x^3
\end{align*}
\]

Example Predator–prey

\[
\begin{align*}
\dot{x} &= x(a - by) \\
\dot{y} &= y(-c + ex)
\end{align*}
\]
A nonlinear centre is a fixed point which is surrounded by periodic orbits. Can be observed in the examples above.

(Notice that it is not enough to look at the linearised system to conclude that a nonlinear centre exists. See previous lecture.)

A system where energy is preserved is called conservative. If energy is not preserved, it is called dissipative.

Example: Damped pendulum

\[
\begin{align*}
 \dot{x} &= y \\
 \dot{y} &= -\sin x - by
\end{align*}
\]

The energy decreases along orbits.
Definition. Let p be a fixed point of the system $\dot{x} = F(x)$, $x \in \mathbb{R}^d$. A differentiable function $L : \mathbb{R}^d \to \mathbb{R}$ is called a weak Lyapunov function of p if there is an open set U, with $p \in U$ and s.t.

\begin{itemize}
 \item $L(x) > L(p)$ for all $x \in U$, $x \neq p$
 \item $L(x) = (\forall \delta, \dot{x}) = (\forall \delta, F(x)) \leq 0$
 for all $x \in U$.
\end{itemize}

The function L is called a (strict) Lyapunov function if it is a weak Lyapunov function and

$L(x) < 0$ for all $x \neq p$, $x \in U$.

Example. Energy is a weak Lyapunov function for the clamped pendulum, but not a strict Lyapunov function.
Recall: A fixed point \(p \) is

- Lyapunov stable if for any \(\varepsilon > 0 \), there is a \(\delta > 0 \) s.t.
 \[
 \| x_0 - p \| < \delta \Rightarrow \| g(t, x_0) - p \| < \varepsilon \quad \text{for all } t \geq 0.
 \]

- \(\omega \)-attracting if there is a \(\delta > 0 \) s.t. \(\omega(x_0) = \{ p \} \) for all \(x_0 \) with \(\| x_0 - p \| < \delta \)

- attracting if it is Lyapunov stable and \(\omega \)-attracting.

Theorem. Suppose that \(p \) is a fixed point of \(\dot{x} = F(x) \).

- If \(\lambda \) is a weak Lyapunov function of \(p \), then \(p \) is Lyapunov stable.
- If \(\lambda \) is a strict Lyapunov function of \(p \), and if \(\lambda_0 > \lambda(p) \) and the set
 \[
 U_{\lambda_0} = \{ x \in U : \lambda(x) \leq \lambda_0 \}
 \]
is compact, then
 \[
 U_{\lambda_0} \subset W^s(p)
 \]
 (i.e. \(x \in U_{\lambda_0} \Rightarrow \lim_{t \to \infty} g(t, x) = p \).)
Proof 1) Let \(\varepsilon > 0 \). Put
\[
V_K = \{ x \in \text{closure}(U) : \mathcal{L}(x) \leq K \} \cap \{ x : \| x - p \| \leq \varepsilon \}
\]
The sets \(V_K \) are compact and non-empty if \(K \geq \mathcal{L}(p) \).
We have
\[
\{ p \} = \bigcap_{K \geq \mathcal{L}(p)} V_K.
\]
There must exist a \(K_0 > \mathcal{L}(p) \) s.t.
\[
\{ p \} \subset V_{K_0} \subset \{ x : \| x - p \| < \varepsilon \}.
\]
Since \(\mathcal{L} \) is continuous, there is a \(\delta > 0 \) s.t.
\[
\{ x : \| x - p \| < \delta \} \subset V_{K_0}.
\]
Since \(\mathcal{L}(y(t, x_0)) \) cannot increase, the set \(V_{K_0} \) is forward invariant.
We get
\[
\| x_0 - p \| < \delta \Rightarrow x_0 \in V_{K_0} \Rightarrow y(t, x_0) \in V_{K_0} \text{ for all } t \geq 0 \Rightarrow y(t, x_0) \in \{ x : \| x - p \| < \varepsilon \} \text{ for all } t \geq 0.
\]
Hence \(p \) is Lyapunov stable.
2) The set U_∞ is forward invariant.

Suppose that $x_0 \in U_\infty$ and that $\gamma(t, x_0) \not\to p, \ t \to \infty$. Since U_∞ is compact and forward invariant, we have

\[
\emptyset \neq \omega(x_0) \subseteq U_\infty
\]

and $\omega(x_0) \neq \{ p \}$.

Take $q \in \omega(x_0)$, $q \neq p$. Then $\gamma'(q) < 0$. Take $\varepsilon > 0$ so small that

\[
\| x - q \| < \varepsilon \Rightarrow \gamma'(x) < \frac{1}{2} \gamma'(q).
\]

Since $q \in \omega(x_0)$, the orbit $\gamma(x_0, t)$ must enter the ball $\{ x : \| x - q \| < \frac{\varepsilon}{2} \}$ for arbitrary large t. Each time, the orbit spends at least a time $T > 0$ in the ball $\{ x : \| x - q \| < \frac{\varepsilon}{2} \}$. In total, the orbit spends infinite amount of time in $\{ x : \| x - q \| < \frac{\varepsilon}{2} \}$, and since γ is uniformly bounded away from 0 in this ball, we must have $\gamma'(\gamma(t, x_0)) \to -\infty$ which is impossible.
Gradient Systems.

Suppose that $G : \mathbb{R}^d \to \mathbb{R}$ is two times continuously differentiable. (Then $\frac{\partial^2 G}{\partial x_i \partial x_j} = \frac{\partial^2 G}{\partial x_j \partial x_i}$.)

The system $\dot{x} = -\nabla G(x)$ is called a gradient system.

"Theorem" Let p be a strict local minimum of G. Then G is a strict Lyapunov function of p.

Counterexample in \mathbb{R}:

\[\text{graph of } G_1 \]

p, global minimum of G_1.

points where $G_1' = 0$, which accumulate at the minimum. There is no open interval around p, where $G' = 0$ only in p.
Theorem. Let p be a strict local minimum of G. Then G is a weak Lyapunov function of p.

Proof. We have
\[\dot{G}(x) = \langle \nabla G(x), \dot{x}(t) \rangle = \]
\[= -\langle \nabla G(x), \nabla G(x) \rangle \leq 0. \]
Since p is a strict local minimum there exists an open set U, with $p \in U$ and
\[G(q) > G(p) \text{ for all } q \in U, \]
$q \neq p$.

This proves that G is a weak Lyapunov function.

Theorem. Suppose that $\nabla G(p) = 0$. Then all eigenvalues of the linearised system are real.

Proof. The matrix $D(-\nabla G)_p = \left[-\frac{\partial^2 G}{\partial x_i \partial x_j} \right]_{i,j}$ is symmetric. \(\Rightarrow\) All eigenvalues are real.