Higher dimensional dynamical systems.

\[X \subset \mathbb{R}^d \text{ and } f : X \to X \]

Suppose that \(p \) is a fixed point, \(p = f(p) \).

If \(f \) is differentiable, we have locally

\[
\mathcal{J}(x) \approx f(p) + \mathcal{D}f_p(x-p) \\
= p + \mathcal{D}f_p(x-p).
\]

So \(f(x) - p \approx \mathcal{D}f_p(x-p) \).

One might suspect that locally at \(p \)
\(f \) has a similar behaviour as

\[
g(x) = Ax
\]

at \(0 \), where \(A = \mathcal{D}f_p \).

We therefore want to understand the linear dynamical system \(g(x) = Ax \).

This is very similar to the case of continuous time.

Consider for simplicity the case in \(\mathbb{R}^2 \) with 2 different eigenvalues \(\lambda_1 \) and \(\lambda_2 \).
If $\lambda_1, \lambda_2 \in \mathbb{R}$:
- Stable node if $|\lambda_1|, |\lambda_2| < 1$.
- Unstable node if $|\lambda_1|, |\lambda_2| > 1$.
- Saddle node if $|\lambda_1| < 1 < |\lambda_2|$.

If $\lambda_1, \lambda_2 \notin \mathbb{R}$:
- Stable focus if $|\lambda_1|, |\lambda_2| < 1$.
- Unstable focus if $|\lambda_1|, |\lambda_2| > 1$.
- Linear centre if $|\lambda_1| = |\lambda_2| = 1$.

Recall the definition of Lyapunov stable, unstable, attracting, and repelling:
- p is Lyapunov stable if for all $r > 0$ there is a $\delta > 0$ s.t. $d(x, p) < \delta \Rightarrow d(f^n(x), p) < r$ for all $n \geq 0$.
- p is unstable if it is not Lyapunov stable.
- p is attracting if p is Lyapunov stable and there is a $\delta > 0$ s.t. $d(x, p) < \delta \Rightarrow f^n(x) \to p, \quad n \to \infty$.
- p is repelling if there is $r > 0$ s.t. $x \neq p \Rightarrow d(f^n(x), p) > r$ for some $n \geq 0$.
Theorem \(f : \mathbb{R}^d \rightarrow \mathbb{R}^d \), \(C^2 \).

Let \(p \) be a fixed point and \(\lambda_1, \ldots, \lambda_d \) the eigenvalues of \(Df_p \) (counted with multiplicity).

If \(|\lambda_j| < 1 \) for all \(j \), then \(p \) is attracting.

If \(|\lambda_j| > 1 \) for all \(j \), then \(p \) is repelling.

If \(|\lambda_j| > 1 \) for some \(j \), then \(p \) is unstable.

This follows from the following theorem.

Theorem. Suppose that \(f \) is \(C^1 \) and \(\det(Df_p) \neq 0 \), \(f(p) = p \).

Then \(f \) is topologically conjugated to its linearisation in some open set around \(p \).

If \(p \) is a hyperbolic fixed point (\(|\lambda_j| \neq 1 \) for all \(j \)), then the conjugacy is \(C^1 \).

This is called the Hartman–Grobman or Grobman–Hartman theorem.
We sketch the proof in a special case. See Hartman's original article for a full proof. (Click on course homepage.)

Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) and assume that

\[
D f_p = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \text{ where } |a| < 1, \quad |b| > 1.
\]

We want to prove that there is a small ball \(B(p,r) \) and an invertible function \(R(x,y) = \begin{bmatrix} U(x,y) \\ V(x,y) \end{bmatrix} \) such that

\[
R \circ f = A \circ R,
\]

where \(A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \). We will construct \(R \) by successive approximations.

Write

\[
f([x]) = \begin{bmatrix} ax + X(x,y) \\ by + Y(x,y) \end{bmatrix}
\]

where \(X(x,y), Y(x,y) = o(1(|x,y|)) \).

Let \(\delta, \theta \in (0,1) \).

Take \(r > 0 \) s.t.

\[
|X(x,y)|, |Y(x,y)| \leq K_0 |x,y| \text{ when } |x,y| < r
\]

where \(K_0 \) satisfies \(\frac{(|b| + K_0)^\delta}{|b|} < \theta \).
We have
\[U(ax + X(x,y), by + Y(x,y)) = aU(x,y) \]
\[V(ax + X(x,y), by + Y(x,y)) = bV(x,y). \]
Consider \(V \). \(U \) is treated in a similar way.) Set
\[V_0(x,y) = y, \]
\[V_n(x,y) = \frac{1}{b} V_{n-1}(ax + X, by + Y). \]
Then \(V_1(x,y) = y + \frac{1}{b} Y \) and
\[V_1 - V_0 = \frac{1}{b} Y, \]
\[|V_1 - V_0| = \frac{1}{|b|} |Y| \leq K_1 \Theta l(x,y). \]
where \(K_1 = \frac{K_0}{|b| |b|}. \)
Let \(\tilde{V}_n = V_n - V_{n-1}. \) Then
\[|\tilde{V}_1(x,y)| \leq K_1 \Theta l(x,y). \]
Suppose that \(|\tilde{V}_n| \leq K_1 \Theta^n l(x,y) \) for some \(n. \) Then
\[|\tilde{V}_{n+1}(x,y)| = \left| \frac{1}{b} \tilde{V}_n(ax + X, by + Y) \right| \]
\[\leq \frac{1}{|b|} K_1 \Theta^n l(ax + X, by + Y) \]
\[\leq K_1 \Theta^n \frac{(|b| + K_0)}{|b|} l(x,y). \]
Hence \(|\tilde{V}_{n+1}| \leq K_1 \theta^{n+1} |(x,y)|^g \), since \(K_0 \) is such that \(\frac{(1.51 + K_0)}{1.51} < \theta \).

This proves that \(\tilde{V}_n \to 0 \) uniformly and \(\sum \tilde{V}_n \) is summable. Hence \(V_n \to V \) uniformly, where \(V \) is a continuous function.

One also has to prove that \(V \) is invertible.
Stable and unstable manifolds.

Let p be a fixed point. The stable manifold of p is

$$W^S(p) = \{ x : f^n(x) \to p, \ n \to \infty \}$$

If f is invertible, we can define the unstable manifold:

$$W^U(p) = \{ x : f^{-n}(x) \to p, \ n \to -\infty \}$$

If $\delta > 0$, then we define the local stable and unstable manifolds.

$$W^S_\delta(p) = \{ x : d(f^n(x), p) < \delta \text{ for all } n \geq 0 \text{ and } f^n(x) \to p, \ n \to \infty \}$$

$$W^U_\delta(p) = \{ x : d(f^{-n}(x), p) < \delta \text{ for all } n \leq 0, \text{ and } f^{-n}(x) \to p, \ n \to -\infty \}$$

If f is C^1, then f is locally conjugated to its linearisation. The local stable and unstable manifolds of the linearisation are clearly smooth "curves", hence $W^S_\delta(p)$ and $W^U_\delta(p)$ are "curves" if δ is sufficiently small. (Curves if 1-dimensional, otherwise manifolds.)
Stable manifold theorem.

Suppose that \(f \) is \(C^r \) and that \(p \) is a hyperbolic fixed point. Then, if \(\delta > 0 \), the local stable and unstable manifolds, \(W^s_\delta(p) \) and \(W^u_\delta(p) \) are \(C^r \) manifolds, if \(\delta \) is sufficiently small.

(If \(p \) is not hyperbolic, then there is also a so called centre manifold.)

When \(p \) is hyperbolic we have

\[
W^s_\delta(p) = \{ x : d(f^n(x), p) < \delta \text{ for all } n \geq 0 \}
\]

\[
W^u_\delta(p) = \{ x : d(f^n(x), p) < \delta \text{ for all } n \leq 0 \}
\]

and

\[
W^s(p) = \bigcup_{n=1}^{\infty} f^{-n}(W^s_\delta(p))
\]

\[
W^u(p) = \bigcup_{n=1}^{\infty} f^n(W^u_\delta(p))
\]
Example \(\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2 \) (the 2-torus).

Define \(f: \mathbb{T}^2 \to \mathbb{T}^2 \) by

\[
f([x], [y]) = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{mod 1.}
\]

\[
= A
\]

This is sometimes called Arnold's cat map (because you can use it to transform cats).

We have \(\det A = 1 \), so \(A^{-1} \) exists and is an integer matrix with \(\det A^{-1} = 1 \).

Hence \([x] \mapsto A[x] \) preserves area.

This implies that \(f \) is invertible and preserves area.

The eigenvalues of \(A \) are \(\frac{3 \pm \sqrt{5}}{2} \) with eigenvectors \(\begin{bmatrix} 2 \\ \sqrt{5} - 1 \end{bmatrix}, \begin{bmatrix} 15 - 1 \\ -2 \end{bmatrix} \).
Hence, the local unstable manifold of \(p = [0] \) is a line with tangent vector \([\frac{2}{5} \, -1] \). Since \(\frac{\sqrt{5} - 1}{2} \) is not rational, \(W^u(p) \) is a dense curve which wraps around \(\mathbb{T}^2 \) infinitely many times.

Similarly for \(W^s(p) \).

Suppose that \(p \) is a fixed point s.t. \(W^s(p) \) intersects \(W^u(p) \). Then there is a "very" complicated dynamical behaviour. This was already observed by Henri Poincaré.

Picture!