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Preface

I still remember a guy sitting on a couch, thinking very hard, and another
guy standing in front of him, saying, “And therefore such-and-such is
true”.

“Why is that?” the guy on the couch asks.

“It’s trivial! It’s trivial” the standing guy says, and he rapidly reels off
a series of logical steps: “First you assume thus-and-so, then we have
Kerchoff ’s this-and-that, then there’s Waffenstoffer’s Theorem, and we
substitute this and construct that. Now you put the vector which goes
around here and then thus-and-so. . . ” The guy on the couch is struggling
to understand all this stuff, which goes on at a high speed for about fifteen
minutes!

Finally the standing guy comes out the other end, and the guy on the
couch says, “Yeah, yeah. It’s trivial.”

We physicists were laughing, trying to figure them out. We decided that
“trivial” means “prove”. So we joked with the mathematicians: “We have
a new theorem—that mathematicians can prove only trivial theorems,
because every theorem that’s proved is trivial.”

The quote above is from Richard P. Feynman’s autobiography “Surely you’re joking
Mr. Feynman!” (1985). Feynman’s point, that mathematicians only can prove trivial
theorems, is actually very much to the point. The main purpose of mathematics is
to structure human thought, to make the key arguments appear as naked and clear as
possible and to cut away all irrelevant dead weight. In mathematics we do not only
want to know that something is true, we want to know why it must be so.

Mathematics is a human endeavour and of course, as everything else, springs from
our common experience as human beings, but the very material of mathematics is
the world of abstract ideas (no one has ever seen “a circle” or for that matter “an
abstract number”, these concepts belong to the world of ideas) and the ultimate goal
of mathematics is to trivialize relations between ideas.

Mathematics actually can be defined as the study of relations between abstract
ideas and within the mathematical community there is a strong feeling that a relation
is not well understood until we have found a context in which it appears as imperative
and trivial. Then there is the question of what trivial here actually means. . .

Given a problem to solve, a mathematician, instead of sitting down and, if possi-
ble, solving it the hard way by brute force computations in let’s say ten minutes, often
prefers to think hard for ten hours or ten days (or ten years if it is rewarding enough!)
in order to make the answer appear as obvious. That is, the mathematician tries to
render the problem into a trivial one. The challenge for a mathematician is usually to
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find the right framework, where the problem and the answer appear naturally and the
relation between them is forced upon us by the very logical structure in which they
appear.

Apart from the purely aesthetical appeal of a transparent setting where a given
relation is clearly understood, the reward when we trivialize a relation is that the
structures we uncover in this process often are of much more general applicability
than the settings we originally were given.

A trivial relation also makes an answer to a question much more certain. A long
and entangled argument where it is hard to see how things are related is not totally
unlikely to contain gaps and maybe even errors, but once we have found a trivial
relation between things, it is likely to be very stable.

To end this philosophical excursion, let me just stress again that trivial should
never be mistaken for easily attained, quite the contrary. In order to make something
become trivial we poor human beings often need to put in an enormous effort, but
once it is done one must agree that it is easier to understand trivial problems than to
attack entangled ones.

These lecture notes are intended for students that have been exposed to elementary
university courses in analysis and linear algebra, and the purpose is to structure the
material of those basic courses, to point at some of the unifying themes that run
through the material, and at the same time make the various tools already encountered
applicable to a larger set of problems.

The main thread in these notes is the study of sets with different kinds of structures
present. We shall then be interested in classes of functions defined on these sets that
preserve or, in some sense, respect the specific structure present.

For example, Boolean algebra homomorphisms between Boolean algebras (sets
with a Boolean algebra structure), continuous functions between topological spaces
(sets with a topological structure), group homomorphisms between groups (sets with
a group structure) and linear maps between linear spaces (sets with a linear algebra
structure).

There are a lot of exercises scattered throughout the text. The reader is strongly
encouraged to try to do them. Some basic material appear only in the form of exercises.

A brief outline of the contents of the six chapters that make up these notes i s as
follows.

Chapter 1 is devoted to a brief and informal introduction to set theory and mathe-
matical logic. In particular we discuss Boolean algebras and the corresponding algebra
homomorphisms.

In Chapter 2 we construct the real and complex number systems starting from the
system of natural numbers. We can then prove things like “the axiom of upper bound”
for bounded subsets of real numbers instead of postulating it as an axiom. The main
difficulty in this chapter is the construction of the real numbers (starting from the
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rational ones which are easy to construct). In this, we follow G. Cantor’s construction
using equivalence classes of Cauchy sequences of rational numbers (instead of the
(equivalent) treatment by R. Dedekind using his famous cuts). The reason for this
preference is that Cantor’s construction can be used virtually unchanged when we
later show that any metric space can be imbedded in a complete metric space in the
same way as the rational numbers are imbedded in the space of real numbers. In going
through the various extensions of numbers in this chapter, the intention is that one
should use the text only as a skeleton and that one should do all the details by oneself
as one goes along.

Chapter 3 treats metric and topological spaces. We here sift out the structure that
is relevant when we discuss notions such as distance and continuity of functions. We
focus mainly on metric spaces and we prove for instance Banach’s fixed point theorem
and Baire’s category theorem. After some preparation we also give the basic existence
theorem for variational problems, i.e. that a continuous real valued function on a
compact topological space attains its extreme values and we use it to give d’Alembert’s
proof of the fundamental theorem of algebra.

Chapter 4 is a very brief introduction to the algebraic concept of a group.
Chapter 5 contains basic abstract linear algebra. The main results are the basis

theorem and the homomorphism theorem for linear maps. We also introduce the
notion of index of a linear operator and show that it is stable under perturbations of
finite rank.

In Chapter 6 both algebraic structure (linear spaces) and topological structure
(metrics coming from norms) are present. We introduce differentiation and integra-
tion in Banach spaces (i.e. complete normed linear spaces), and we prove the fun-
damental theorem of analysis (i.e. that differentiation a nd integration are inverse
operations). We use Baire’s category theorem to prove Banach’s open mapping theo-
rem. This is then used when we prove the inverse function theorem for Banach spaces
(i.e. that a differentiable function locally is “as well behaved” as its differential).

The bibliography at the end contains some references to the literature where an
interested reader can find much more information on most of the material touched
upon in these notes.

Finally I want to express my gratitude to my colleagues at the Mathematical Centre
in Lund for many pleasant and interesting discussions concerning the contents of these
notes. In particular I would like to thank Tomas Claesson, Anders Holst, Per-Anders
Ivert, Pelle Pettersson, Johan Råde and Olivier Verdier for many useful comments.
Needless to say, the responsibility for any shortcomings and imperfections in these
notes is entirely mine.

Hällevik in January 2006
Magnus Fontes
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Chapter 1

Elementary set theory and
mathematical logic

Magicians and scientists are, on the face of it, poles apart. Certainly, a
group of people who often dress strangely, live in a world of their own,
speak a specialized language and frequently make statements that appear
to be in flagrant breach of common sense have nothing to do with a group
of people who often dress strangely, s peak a specialized language, live in
. . . er. . .

From “The Science of Discworld” (1999) by Terry Pratchett et. al.

One can depart from many different starting points in building a mathematical
theory. It seems to be true that you can not create something from nothing, and so
we shall have to call upon some of your experience and good judgment. In particular
your ability to read and assign some kind of more or less precise meaning to the written
words. Even so it is of course desirable to start from a few very clear assumptions and
use as unambiguous logical implications as possible to reach our desired conclusions.

This idea, of reducing the theory to a minimal core from which the rest can be
deduced, is present everywhere in mathematics, but maybe it is nowhere as clearly
visible as in axiomatic set theory.

1.1 Sets

“Hardly anything more unwelcome can befall a scientific writer than that
one of the foundations of his edifice be shaken after the work is finished.
I have been placed in this position by a letter of Mr. Bertrand Russell just
as the printing of this volume was nearing completion.”

G. Frege 1903 commenting (in the appendix of his Grundgesetze) on
Russell’s paradox.
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We shall first introduce some indispensable notation. (For a much more com-
prehensive introduction to axiomatic set theory see Halmos “Naive set theory” or his
friend Kelley’s appendix in “General Topology”.)

We begin with some undefined symbols. The meaning of these symbols will
(hopefully) become clearer and clearer as we use them. These symbols are equality
(=), belongs to (∈) and the classifier ({ ; }). We shall also use the concept of a set
without giving a formal definition of what a set really is supposed to be. In fact, when
constructing an axiomatic system, some basic concepts always have to be left unde-
fined and their “meaning” has to be understood by their internal relations and by how
they are allowed to be manipulated. Let us now anyway try to give some informal
explanations.

The sentence a = b means that a and b are equal or, if you want, different names
of the same object. If a is not equal to b we write a 6= b. The sentence a ∈ A is short
for the statement that a is an element of the set A. If a is not an element of the set A
we write a /∈ A. (All elements in set theory are themselves supposed to be sets.)

One of the basic set axioms (the Axiom of extent) says that a set is completely
described by its elements. Thus for any set A we have A = {x ; x ∈ A}, and A = B iff
x ∈ A implies that x ∈ B and x ∈ B implies that x ∈ A. Thus in order to show that
two sets are equal, we have to show that they contain the same elements and to define
a set it is enough to list all of its elements.

In set theory the classifier is used to define sets. We can for instance define the
empty set (∅) to be the set of all x for which it is true that x is not equal to x, we write

∅ := {x ; x 6= x},

Here a := b means that a is defined to be equal to b.
The empty set thus has no elements at all (since for any given x it is true that

x = x).
We will also for short use

{a, b, c, . . . } := {x ; x = a or, x = b or, x = c or, . . . } .

We can for instance form

{∅} , {∅, {∅}} , {∅, {∅} , {∅, {∅}}}

and so on. . .
People early realized that it was not without hazards to freely use the basic con-

structions in set theory. It is for instance dangerous to talk about things like the set of
all sets.

In order to illustrate the difficulties one can run into in elementary set theory, let
us make the following definition.

Definition 1.1. We say that a set N is normal iff N /∈ N .
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Remark. Here “iff ” := “if and only if ”. This notation is due to Halmos.

Now let M be the set of all normal sets. Does M ∈ M ? This is the famous
Russell’s paradox. There are several possible ways to avoid this paradox. We shall
here assume that all sets under consideration are subsets of some fixed universal set
U .

This “resolves” the paradox in the sense that it makes it impossible to speak about
the set M . In fact we can then only (try to) construct

M = {N ⊂ U ; N /∈ N}.

The question about if M ∈ M with the contradiction it leads to, now brings us to the
conclusion that M is to big to speak about, it is not a subset of our universe U .

Maybe this kind of paradoxes show more than anything how shaky the whole
business of the foundations of set theory is.

Definition 1.2. We define the union of two sets A and B as

A ∪ B := {x ∈ U ; x ∈ A or x ∈ B} ,

and the intersection of A and B as

A ∩ B := {x ∈ U ; x ∈ A and x ∈ B} .

Definition 1.3. We also define the complement of a given set A as

Ac := {x ∈ U ; x /∈ A} .

We will also use the inclusion relation.

Definition 1.4.

A ⊂ B iff x ∈ A implies that x ∈ B.

Exercise 1.1. Show that
A ∩ B = A iff A ⊂ B.

We leave the verification of the following formulas to the reader. To prove them
one should check (using intuitive elementary logical statements involving logical con-
nectives such as and and or) that sets that we claim are equal actually contain the same
elements. Firstly, we have associativity and commutativity laws

A ∪ (B ∪ C ) = (A ∪ B) ∪ C , A ∩ (B ∩ C ) = (A ∩ B) ∩ C , (1.1)

A ∪ B = B ∪ A, A ∩ B = B ∩ A. (1.2)

8



We also have the distributative laws

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) (1.3)

and
A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ). (1.4)

Furthermore we have the existence of a unit element (U ) in the sense that

A ∩ U = A (1.5)

and the existence of a zero element (∅)

A ∪ ∅ = A. (1.6)

Finally
A ∪ Ac = U and A ∩ Ac = ∅. (1.7)

These formulas are theorems of Set Theory, but it turns out that they are actually
useful in other situations as well. We take them as axioms for a Boolean algebra
(named in honour of George Boole (1815–1864) and his seminal work “The mathe-
matical Analysis of Logic” (1847)).

Boolean algebras

Definition 1.5. A set (B) together with two binary operations B 3 A,B → A∪B ∈ B
and B 3 A,B → A ∩ B ∈ B and one unary operation B 3 A 7→ Ac ∈ B on it,
containing a unit (U ) and a zero (∅) element and satisfying formulas (1.1) to (1.7)
above is called a Boolean algebra.

A Boolean algebra is thus a set B containing a zero (∅) and a unit (U ) element with
one unary operation (c) and two binary operations (∪ and ∩) defined on its elements
and we will write this as {B,∪,∩,c , ∅,U} when we want to emphasize the algebraic
structure present. (When the algebraic structure is clear from the context or when the
specific notation for the algebraic operations is irrelevant we shall often omit them and
simply speak about “the Boolean algebra B”.)

Note that we may very well denote the set and the operations differently, for in-
stance {B,∨,∧,¬, 0, 1}. The important thing then is that the computation laws (1.1)
to (1.7) above hold with ∪,∩ , c , ∅, and U replaced by ∨,∧ , ¬, 0 and 1. The no-
tation {B,∨,∧,¬, 0, 1} is common in mathematical logic and we then usually write
¬A instead of A¬.

As we have seen above, the family of all subsets of a given (universal) set is a
Boolean algebra with the operations of union, intersection and taking complements.
The zero is then the empty set and the unit is the universal set.

There are other, at least conceptually different, models of Boolean algebras.
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Exercise 1.2. Show that the trivial model {{0, 1},+, ·, ′, 0, 1} is a Boolean algebra,
if we define that 0′ = 1, 1′ = 0, 1 · 1 = 1, 0 · 1 = 1 · 0 = 0, 1 + 1 = 1, 0 + 0 = 0,
0 + 1 = 1 + 0 = 1 and 0 · 0 = 0, with 1 as unit element and 0 as the zero element.
We shall call this the trivial Boolean algebra.

In the exercise above we could think about 0 as the empty set and 1 as the universe
and thus identify the model with an algebra of sets, namely {{∅,U},∪,∩,c , ∅,U}.
We shall later define precisely what we mean when we identify two Boolean algebras.

Exercise 1.3. Using only the axioms (1.1) to (1.6) for a Boolean algebra, show that
the zero and unit element in a Boolean algebra are unique.

Remark. Hence it follows that the last axiom (1.7) is well defined

Exercise 1.4. Show that the unary operation of taking complements in a Boolean
algebra {B,∨,∧,¬, 0, 1} is unique, in the sense that, given A ∈ B there exists a
unique element B ∈ B such that both A ∨ B = 1 and A ∧ B = 0.

In particular, notice that this implies that the formula

¬(¬A) = A

immediately follows from the axioms.

For any Boolean algebra we define an order relation, the concept of inclusion, in
the following way.

Definition 1.6. Let {B,∨,∧,¬, 0, 1} be a Boolean algebra. We say that A ∈ B is less
than B ∈ B and we write A ≤ B iff

A ∧ B = A.

Notice that (as a result of Exercise 1.1 above) this is consistent with the definition
of inclusion in the case of set theory.

One very useful observation concerning Boolean algebras is the following so called
duality principle.

Exercise 1.5. Check that if {B,∨,∧,¬, 0, 1} is a Boolean algebra with 0 as zero and
1 as unit, then {B,∧,∨,¬, 1, 0} is a Boolean algebra with 1 as zero and 0 as unit.

The duality principle implies that, given any proposition that is derivable from
the axioms for a Boolean algebra, the proposition where we have interchanged ∨ and
∧ and 0 and 1 is also derivable from the axioms.

For any Boolean algebra, {B,∨,∧,¬, 0, 1}, the following formulas follow from
the axioms, and the reader should try to prove them.

(Notice that by the duality principle we often have to prove just one out of a dual
pair of formulas.)
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A ∧ A = A, A ∨ A = A,

A ≤ A,

A ∧ 0 = 0, A ∨ 1 = 1,

A ∧ (A ∨ B) = A, A ∨ (A ∧ B) = A,

¬ (A ∨ B) = (¬A) ∧ (¬B), ¬ (A ∧ B) = (¬A) ∨ (¬B),

A ∨ B = B iff A ≤ B.

If A ≤ B and B ≤ A then A = B.

If A ≤ B and B ≤ C then A ≤ C .

¬0 = 1,

¬1 = 0,

A ≤ B iff ¬B ≤ ¬A.

Exercise 1.6. Prove some of these formulas.

Set Theory provides us with different models of Boolean algebras (and in fact it
can be shown that any Boolean algebra can be identified with a model of a Boolean
algebra whose elements are members of a family of subsets of some given universal
set). What Boole noticed was that, apart from “the usual sets” used in mathematics,
there are other possible conceptual interpretations of Boolean algebras. The formulas
turn out to be reasonable also as a description of how the logic of propositions behaves
(and in fact for many other systems, for instance systems of switching circuits). We
shall return to discuss the calculus of logical propositions once we have introduced
functions.

1.2 Functions

A very useful concept is that of a function. Until the beginning of the 20:th century
mathematicians were not very clear about what a function in general actually is. (This
was one difficulty in the early 19th century discussions about when and where Fourier
series converges.) The view we have today is the following.

Let X and Y be two nonempty sets. A function f from X to Y , f : X → Y , is
a “rule” that for any fixed given element x ∈ X assigns precisely one unique element
f (x) ∈ Y , X 3 x 7→ f (x) ∈ Y .
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Definition 1.7. If f : X → Y and A ⊂ X , we define the image of A under the
mapping f as

f (A) := {f (x) ∈ Y ; x ∈ A}

and if B ⊂ Y we define the inverse image of B under the mapping f as

f −1(B) := {x ∈ X ; f (x) ∈ B} .

If now f : X → Y we have

f (∅) = ∅,

f (X ) ⊂ Y ,

A1 ⊂ A2 ⊂ X ⇒ f (A1) ⊂ f (A2)

and for any index set I

f (∪α∈I Aα) = ∪α∈I f (Aα),

f (∩α∈I Aα) ⊂ ∩α∈I f (Aα).

Inverse images are better behaved.

f −1(∅) = ∅,

f −1(Y ) = X ,

B1 ⊂ B2 ⊂ Y ⇒ f −1(B1) ⊂ f −1(B2),

f −1(Bc) = (f −1(B))c.

Exercise 1.7. Concerning this last rule above for taking complements, does there exist
a corresponding relation for images?

For any index set I we also have

f −1(∪α∈I Bα) = ∪α∈I f −1(Bα)),

f −1(∩α∈I Bα) = ∩α∈I f −1(Bα)).

Definition 1.8. If f : X → Y we say that f is surjective iff f (X ) = Y , that f is
injective iff f (x1) = f (x2) ⇒ x1 = x2 and that f is bijective iff it is both injective
and surjective.

Exercise 1.8. Assume that f : X → Y is surjective. Show that

f (Ac) = (f (A))c for all A ⊂ X

iff f is also injective (and thus a bijection).
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Definition 1.9. If f : X → Y is a bijection we can define the inverse mapping
f −1 : Y → X by the following rule. For any fixed y ∈ Y let f −1(y) = x for the
unique x ∈ X such that f (x) = y.

We give some more definitions.

Definition 1.10. Given two sets X and Y we define the product set X × Y as the
following set of ordered pairs

X × Y := {(x, y) ; x ∈ X and y ∈ Y } .

Definition 1.11. Given a nonempty set X we say that the family of subsets {Xα}α∈I
is a partition of X iff

∪α∈I Xα = X

and
Xα ∩ Xβ = ∅ if α 6= β .

Now given a partition of X , we say that two elements x1 ∈ X and x2 ∈ X are
equivalent and we write x1 ∼ x2 iff they belong to the same subset Xα in the partition.

The following rules hold for this relation. For any x ∈ X

x ∼ x, (reflexivity).

Furthermore

x1 ∼ x2 ⇒ x2 ∼ x1, (symmetry),

x1 ∼ x2 and x2 ∼ x3 ⇒ x1 ∼ x3 (transitivity).

The partition can be completely described by the subset B ⊂ X × X given by B :=
{(x1, x2) ∈ X × X ; x1 ∼ x2}. We make the following definition.

Definition 1.12. A binary relation on a given set X is a subset B of the product set
X × X .

Definition 1.13. A binary relation B on a given set X such that

(x, x) ∈ B for all x ∈ X ,

(x1, x2) ∈ B ⇒ (x2, x1) ∈ B,

(x1, x2) ∈ B and (x2, x3) ∈ B ⇒ (x1, x3) ∈ B

is called an equivalence relation.
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One often writes x1 ∼ x2 instead of (x1, x2) ∈ B if the relation B is an equivalence
relation.

From the discussion above it follows that a partition of a set X in a natural way
generates an equivalence relation on X and that the partition is completely described
by the relation.

On the other hand, if we are given an equivalence relation (∼) on a set X we can
in a natural way define a partition of X . In fact, given x ∈ X , the following subset of
X denoted by [x] is called the equivalence class generated by x:

[x] := {y ∈ X ; y ∼ x} .

Exercise 1.9. Show that the equivalence classes give a partition of X .

We conclude that there is a one to one correspondence between equivalence rela-
tions on a set and partitions of the same set.

Given a set X and an equivalence relation ∼ on X , we denote by [X ] the set of
equivalence classes of X , and we denote by q the function mapping an element x ∈ X
t o its equivalence class [x] ∈ [X ] (i.e. q(x) = [x]). This (surjective) map q is called the
quotient map for the equivalence relation. We note that x1 ∼ x2 iff q(x1) = q(x2).

Exercise 1.10. Let X and Y be two sets and let f : X → Y be a function. Show that
x1 ∼ x2 if and only if f (x1) = f (x2) defines an equivalence relation on X .

Let qf be the corresponding quotient map. Show that f induces a unique injective
map [f ] such that the following diagram commutes.

X

qf

��

f

  
[X ]

[f ]
// Y

That the diagram commutes means precisely that the different functions defined on
their respective sets satisfy

f = [f ] ◦ qf .

Let us now return to the universe of general sets and let us try to define the number
of elements (#X ) of a given nonempty set X . (Let us once and for all agree that the
empty set has zero elements.)

Definition 1.14. Let X and Y be two given nonempty sets. We say that the cardi-
nality of X is smaller than or equal to the cardinality of Y and we write #X ≤ #Y iff
there exists an injective function f : X → Y .

Exercise 1.11. Show that #X ≤ #Y iff there exists a surjective map g : Y → X .
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Exercise 1.12. Show that for all nonempty sets X we have that #X ≤ #X . Also show
that if #X1 ≤ #X2 and #X2 ≤ #X3 then #X1 ≤ #X3.

The following remarkable result is the Schroeder-Bernstein theorem.

Theorem 1.1. Let X and Y be two given nonempty sets, then #X ≤ #Y and #Y ≤ #X
iff there exists a bijective function f : X → Y .

Remark. If there exists a bijective function f : X → Y we say that X and Y have the
same cardinality and we will write #X = #Y . If #X ≤ #Y but #X 6= #Y we will write
#X < #Y .

Proof. If there exists a bijective function f : X → Y , we can define the (also bijective)
inverse mapping f −1 : Y → X which shows that #X ≤ #Y and #Y ≤ #X .

On the other hand , if #X ≤ #Y and #Y ≤ #X , there exist an injective mapping
f : X → Y and an injective mapping g : Y → X . We may assume that neither of
them is bijective (since otherwise we are done).

We can speak of the inverse mappings f −1 and g−1 a s long as we remember that
they only are defined on f (X ) and g(Y ) respectively.

Now let x ∈ X and apply g−1 to it if we can. If g−1(x) exists we call it the first
ancestor of x. The element x itself, we call the zeroth ancestor of x. Now, if possible,
we apply f −1 to g−1(x) and if it exists we call f −1 ◦ g−1(x) the second ancestor of x
and so on. Either this procedure ends in a finite number of steps, that can be either
an even or an odd number, or we can go on for ever.

It is clear that the procedure gives a partitioning of X into three disjoint sets. The
subset Xi ⊂ X of elements in X having infinitely many ancestors, the subset Xe ⊂ X
having an even number of ancestors and finally the subset Xo ⊂ X having an odd
number of ancestors.

We now split the set Y in the same way, i.e. Y = Yi ∪ Ye ∪ Yo and we note that f
maps Xi bijectively onto Yi and Xe bijectively onto Yo. Finally g−1 maps Xo bijectively
onto Ye and thus we can define a bijective mapping h : X → Y by

h(x) =

{
f (x) if x ∈ Xi ∪ Xe

g−1(x) if x ∈ Xo.

In the next chapter we will introduce the natural numbers N := {1, 2, 3, . . . }.
Let us here only note some interesting cardinality relations.

Example 1.1. Since the mapping N 3 n 7→ 2n is a bijection from N to the set of even
natural numbers 2N = {2, 4, 6, . . . }, we conclude that these two sets have the same
cardinality, i.e. #N = #2N although 2N is a true subset of N.

The following two exercises are really hard.
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Exercise 1.13. Show that #(N×N) = #N. This is a famous result by G. Cantor and
N× N := {(n,m) ; n,m ∈ N}.

Exercise 1.14. Let 2N denote the family of all subsets of N. Show that #N < #2N.
This is also a famous result by G. Cantor.

The famous continuum hypothesis asks if there exists a set X such that

#N < #X < #(2N).

One answer is that with the “usual” axiomatic system (the Zermalo- Fraenkel system
with the axiom of choice (ZFC)) for set theory this question is undecidable, i.e. we
cannot decide if there exists such a set or not using only the axioms. The result that
the non-existence of such a set is consistent with ZFC is due to K. Gödel and the fact
that the existence of such a set also is consistent with ZFC is due to P. Cohen.

The axiom of choice in itself is a curious axiom. It says that given any family of
sets {Xα}α∈I with a given index set I , there exists a choice function f : I → ∪α∈I Xα
such that f (α) ∈ Xα, i.e. we can choose one element in each set.

With the help of the axiom of choice we can construct very interesting sets leading
for instance to such things as the Banach-Tarski paradox, which really is no paradox
at all. It is only a construction of a possibly counter-intuitive set.

Usually we are not interested in all functions between two given sets. There can
for instance be some relevant stucture present on the two sets and we can be interested
in precisely those functions that preserve that structure.

We shall illustrate this by looking at Boolean algebras again.

Boolean algebras revisited

Definition 1.15. Let {A,∨,∧,¬} and {B,∪,∩,c } be two Boolean algebras.
We say that a function f : A → B is a Boolean algebra homomorphism iff

f (A)c = f (¬A) for all A ∈ A and

f (A ∨ B) = f (A) ∪ f (B) for all A,B ∈ A.

For later use, we distinguish the Boolean algebra homomorphisms having the triv-
ial Boolean algebra as target space.

Definition 1.16. Let {A,∨,∧,¬} be a Boolean algebra. A Boolean algebra homo-
morphism fromA into the trivial Boolean algebra {{0, 1},+, ·, ′} i s called a Boolean
function on A.

Exercise 1.15. Show that if f : A → B is a Boolean algebra homomorphism, then f
maps the unit element to the unit element, the zero element to the zero element and
that

f (A ∧ B) = f (A) ∩ f (B) when A,B ∈ A.
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The exercise above shows that a Boolean algebra homomorphism preserves all the
relevant algebraic structure. If it happens to be bijective it preserves all the relevant
structure.

Exercise 1.16. Show that if f : {A,∨,∧,¬} → {B,∪,∩,c } is a bijective Boolean
algebra homomorphism, then the inverse mapping is also a Boolean algebra homo-
morphism.

Exercise 1.17. Show that the composition of two Boolean algebra homomorphisms
is again a Boolean algebra homomorphism.

Definition 1.17. A bijective Boolean algebra homomorphism is called a Boolean
algebra isomorphism, and if there exists a Boolean algebra isomorphism between
two given Boolean algebras, then they are said to be isomorphic.

The notion of Boolean algebra isomorphism gives an equivalence relation on the
set of all Boolean algebras. From an algebraic and set theoretic point of view isomor-
phic Boolean algebras are impossible to distinguish and we shall usually identify them
as Boolean algebras. In other words we shall only care about the equivalence classes
under this equivalence relation.

Exercise 1.18. Show that the relation of being isomorphic is an equivalence relation
on the set of all Boolean algebras.

We shall now return to the question about how Boolean algebras can be used to
analyze logical propositions.

In propositional calculus, all symbols A,B,C , . . . denote (logical) statements, for
example statements like “5 is a prime number” or “

√
2 is a rational number”.

Boole realized that the composition of logical statements behaves like the algebra
of sets and that complex composite statements can be analyzed using the algebra.

In fact , if we interpret A ∨ B as (either A or B or both A and B), A ∧ B as (both A
and B) and ¬A as (the negation of A), the logical connectives “or”, “and” and “not” can
intuitively be identified with the corresponding Boolean algebra operations.

Exercise 1.19. The two statements “5 is not a prime number or
√

2 is not a rational
number” and “It is not the case that, 5 is a prime number and

√
2 is a rational number”

are (intuitively) logically equivalent, i.e. they intuitively have the same meaning. To
which Boolean algebraic formula does this correspond?

Exercise 1.20. Think through some other basic algebraic formulas for a Boolean al-
gebra, and find similar simple examples of how to intuitively interpret them in the
context of logical statements.

As you might now believe, the composition of logical statements intuitively can
be interpreted as corresponding Boolean algebra operations.
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We shall from now on assume that every set of logical statements that we will
discuss is closed under the logical operations of “and”, “or” and “not”, and we shall
identify it with a corresponding Boolean algebra whose elements can be thought of as
consisting of all logical statements that are equivalent to a particular statement.

The characteristic quality of all logical statements is that they are supposed to have
a well defined truth value. Every logical statement is supposed to be either true or
false, but never both at the same time.

Truth values are furthermore supposed to behave in a certain way. They are sup-
posed to be assigned in such a way that if a statement A is true, then the negation of
the statement ¬A is false, and if the statement A is false then the negation ¬A is true.
We describe it completely with a so called truth table.

A ¬A
T F
F T

The truth table above describes how our unary operation, taking the negation, is
supposed to behave with respect to truth values.

Concerning our binary operations we will assume that the following truth table
holds

A B A ∨ B A ∧ B
T T T T
T F T F
F T T F
F F F F

Exercise 1.21. Check that the truth table above corresponds to your intuitive idea of
how “truth” should behave when we deal with logical statements.

Now let {A,∨,∧,¬} be a Boolean algebra, whose elements represent logical state-
ments, and define the truth function on A, i.e. the function that for any given el-
ement in A gives the truth value for the corresponding equivalence class of logical
statements (which is well defined since necessarily every statement in the class has the
same truth value).

Let us for simplicity denote true by 1 and false by 0. The truth function is then
a function from the Boolean algebra A into the set {0, 1}. Let us now equip the set
{0, 1} with its Boolean structure, that is, we consider it as the trivial Boolean algebra
{{0, 1},+, ·, ′} with zero element 0 and unit element 1.

The truth table for the negation operation above simply says that if f (A) = 1,
then f (¬A) = 0 and if f (A) = 0, then f (¬A) = 1. Since the image of the truth
function only consists of the two elements 0 and 1, this corresponds exactly to the
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formula
f (A)′ = f (¬A) for all A ∈ A.

Exercise 1.22. Show in the same way that the truth table for the binary operations
corresponds precisely to the formulas

f (A ∨ B) = f (A) + f (B) for all A,B ∈ A and

f (A ∧ B) = f (A) · f (B) for all A,B ∈ A,

for the truth function defined on A.

In other words we conclude that the truth tables above correspond precisely to the
condition that the truth function f : A → {0, 1} is a Boolean function, (i.e. that the
truth function, from A into {0, 1}, preserves the algebraic structure when we regard
{0, 1} as the trivial Boolean algebra).

Led by the discussion above, we make the following definition.

Definition 1.18. A Boolean logical system is a Boolean algebra A together with a
Boolean function (a truth function) f : A → {0, 1}.

From now on we shall always assume that every set of logical statements that we
will discuss can be identified with a Boolean logical system.

If, for a given Boolean logical system, f (A) = 1 (for the truth function f ), we say
that A is true, and if f (A) = 0, we say that A is false.

We shall now introduce and analyze some more composite logical statements.
A very useful logical concept (that we have already used) is conditional implica-

tion. This is intuitively a construction of the type “If A then B”. For example: “If
n > 2 then n2 > 4” or “If the moon is made of cheese then it is full of holes”.

The concept of conditional implication (which we will write as A ⇒ B in the
corresponding Boolean logical system) will now be precisely defined on any Boolean
algebra using only the basic algebraic symbols of the algebra.

Definition 1.19. Let {A,∨,∧,¬} be a Boolean algebra. Then for any A and B in A

A⇒ B

is defined to be equal to
(¬A) ∨ B.

Remark. Note that (A⇒ B) = ¬
(
A ∧ (¬B)

)
.

If {A,∨,∧,¬} is a Boolean logical system with truth function f we get

f ((¬A) ∨ B) = f (A)′ + f (B), for all A,B ∈ A,

and thus
f (A⇒ B) =

(
f (A)⇒ f (B)

)
, for all A,B ∈ A.
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By inspection we get the following truth table for conditional implication.

A B A⇒ B
T T T
T F F
F T T
F F T

This table sometimes causes confusion when we compare it with everyday usage
of logical statements. One should notice that if A is false, then A ⇒ B is always true
regardless of the truth value of B. An everyday example is for instance the following
statement that we, by our table above, regard as true (assuming that we agree that the
assumption is false):

“If the world is flat, then it rides on the back of a giant turtle.”

We shall now define biconditional statements, i.e. statements of the type A iff B,
that we write A⇔ B in the following

Definition 1.20. Let {A,∨,∧,¬} be a Boolean algebra. Then for any A and B in A

A⇔ B

is defined to be equal to
(A⇒ B) ∧ (B ⇒ A).

Exercise 1.23. Write out this definition without using the “right–arrow” (⇒) and
think it through by means of some examples of logical statements.

Exercise 1.24. Make a truth table for the biconditional statement.

Definition 1.21. Let {A,∨,∧,¬} be a Boolean logical system. Then the zero ele-
ment of A is called a contradiction and the unit element of A is called a tautology.

Note for instance that for any element A in a Boolean logical system {A,∨,∧,¬},
the construction (¬A) ∧ A is a contradiction whereas (¬A) ∨ A is a tautology.

Exercise 1.25. Show that, in any given Boolean logical system, a contradiction nec-
essarily is false and that a tautology necessarily is true.

We shall finish this section by looking at “proof by contradiction” or “Reductio
ad absurdum”, which we shall have many occasions to use and which is very easy to
analyze with the propositional calculus.

“Reductio ad absurdum is one of the mathematicians finest weapons. It
is a far finer gambit than any chess gambit: a chess player may offer the
sacrifice of a pawn or even a piece, but a mathematician offers the game.”

G.H. Hardy from “A Mathematicians apology”
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Reductio ad absurdum rests on the fact that, in any Boolean logical system, the
two constructions

A⇒ B

and
¬B ⇒ ¬A

are equal (and thus necessarily have the same truth value).

Exercise 1.26. Show this by using basic Boolean algebra computations.

In mathematics we are interested in deducing new true statements from a set of a
priori known true statements.

In trying to prove, by Reductio ad absurdum, that some a priori known true fact
A implies that the statement B is true, which precisely corresponds to showing that
A⇒ B is true when A is true), we assume both A and the negation of B, and we then
try to show that this leads to a contradiction within the system.

In short it is thus an argument of the type

A ∧ (¬B) ⇒ (¬A) ∧ A.

Exercise 1.27. Show that(
A⇒ B

)
=
(

A ∧ (¬B)⇒ (¬A) ∧ A
)
.

The final conclusion is that either B is true or there is something within the system
of logical statements concerning mathematics hat is flawed (we offer the game).

Finally, in (mathematical) logic there are some more symbolic abbreviations that
we will use and that are useful to know. These are

∀ abbreviates “for all”,

∃ abbreviates “there exists” and

∃ ! abbreviates “there exists uniquely”.
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Chapter 2

Numbers

One concept we shall certainly need is the concept of natural numbers, together with
their rules of arithmetic and the order relation. To construct the natural numbers, one
could start from axiomatic set theory and logic, and build the set of positive integers
from there. We could also begin by giving Peano’s axioms for the positive integers and
then define the rules of arithmetic. We will not do this. We will instead assume that
the natural numbers exist and directly give the rules of arithmetic and order relations
for them. From there we will construct ( using some elementary set theory) the whole
realm of real numbers, together with their rules of arithmetic, their order relation and
their topology. In particular we shall prove that the space of real numbers is complete.

One reason for laying down the fundamentals in this way is that however beautiful
the axiomatic set theory is, it is not clear that it does not contain contradictions. Some
of the language of set theory is indispensable in doing mathematics, but if we one day
would find a contradiction in our basic set theory, we would still need and use the
natural numbers and their rules of arithmetic, and I guess that we would simply go
about the task of redesigning our axioms for set theory.

We begin with a brief sketch of the contents of this chapter.
The system of natural numbers is a set (N) together with three binary relations,

addition (+), multiplication (·), the order relation (<) and axioms governing their
interaction.

The most general (algebraic) equation in the system of natural numbers is a
general polynomial equation with coefficients that are natural numbers, i.e. given
a0, a1, . . . an ∈ N, find x ∈ N such that

anxn + an−1xn−1 + · · ·+ a1x = a0. (2.1)

It is very easy to see that most equations of this type do not have any solution at
all in N, for instance the simple equation a1x = a0 is solvable in N iff a1 divides a0.

In order to be able to “solve it” anyway, we shall have to try to define solutions
that lays outside the realm of the natural numbers.
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Algebra was until the 19th century more or less synonymous with the study of
polynomial equations and this study triggered the successive extensions of the natural
numbers all the way to the complex numbers.

The basic idea is to find a new system (S, ⊕, �, �) that as far as possible satisfies
the same axioms as the system of natural numbers (N, +, ·, <). Furthermore the
system S must come equipped with an injective identification map I : N → S that
preserves as much of the algebraic structure as possible. (This is in order to be able to
regard N as a subset of S while computing.) In particular we need to have that

I (a + b) = I (a)⊕ I (b),

and
I (a · b) = I (a)� I (b).

This makes it possible to apply the identification map to equation (2.1) and get

(I (an)� I (x)n)⊕ (I (an−1)� I (x)n−1)⊕ · · · ⊕ (I (a1)� I (x)) = I (a0), (2.2)

where I (a)k refers to the �–operation iterated k times.
The hope is now that the study of solvability is easier in the extended system (and

in fact it is then natural to allow also the coefficients in the equation in general to
belong to S and not just I (N)).

The nice thing is that, since the identification map I is an injection that preserves
the algebraic structure, if we find a solution s ∈ S to (2.2) that happens to be the image
of a natural number under the identification map, i.e. s = I (m) for some m ∈ N, we
can immediately conclude that m is a solution to the original equation (2.1).

We shall below show that it is indeed possible to find an extension of the natural
numbers (together with an identification map I ), namely the system of complex num-
bers (C,+, ·), such that, given a0, a1, . . . an ∈ C, there always exists an element x ∈ C
such that

anxn + an−1xn−1 + · · ·+ a1x = a0.

The existence of a solution to any complex polynomial equation is known as the
fundamental theorem of algebra.

The extension from the natural numbers to the complex numbers will be achieved
in several steps. We shall extend the natural numbers to the integers, then the
integers to the rational numbers, then the rational numbers to the real numbers
and finally the real numbers to the complex numbers.

The extension from the natural numbers to the complex numbers will then be the
composition of all the extensions above.

Of these extensions, the extension from the rational to the real numbers is by
far the most intricate one, due to the fact that we in this case need limit arguments
to accomplish our goal, whereas in all other cases we get by with simple algebraic
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extensions. It is with the introduction of the real numbers that topology enters the
picture.

A lot of the details will as already mentioned be in the form of exercises. This is
because the only way to actually get a feeling for the constructions is to think through
the details. It would also be immensely tiresome to write out (not to speak about
reading) all arguments. Thus we often, but not always, signal that there is something
to think through or do with the inclusion of an exercise.

2.1 Natural numbers

“The natural numbers were made by God, everything else is the work of
man.”

Leopold Kronecker 1886.

“The positive integers and their arithmetic are presupposed by the very
nature of our intelligence and, we are tempted to believe, by the very
nature of intelligence in general.”

Errett Bishop 1967.

The system of natural numbers is a set N together with three binary relations (+,
·, <) on N× N satisfying the following axioms.

x + (y + z) = (x + y) + z, (associative law of addition),

x + y = y + x, (commutative law of addition),

(x · y) · z = x · (y · z), (associative law of multiplication),

x · y = y · x, (commutative law of multiplication),

∃ ! 1 ∈ N and 1 · x = x, (existence of multiplicative identity),

(x + y) · z = x · z + y · z, (distributive law ),

x + y = z + y ⇔ x = z, (additive cancellation law ),

x · y = z · y ⇔ x = z, (multiplicative cancellation law ).

The relation (<) linearly orders N, i.e. given x, y ∈ N we always have precisely one
of the following alternatives,

x < y or

y < x or

x = y.
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Furthermore

x < y iff there exists a z ∈ N such that x + z = y, (successor axiom),

x < y and y < z ⇒ x < z, (transitivity),

x < y ⇒ x + z < y + z, for any z ∈ N, (additive order preserving),

x < y ⇒ x · z < y · z for any z ∈ N, (multiplicative order preserving).

Finally we have the induction axiom

If M ⊂ N, 1 ∈ M and n ∈ M ⇒ n + 1 ∈ M , then M = N.

The system described above constitutes the system of natural numbers. Note
that the axioms above are far from being logically independent.

Exercise 2.1. Show (for instance by contradiction) that the multiplicative cancellation
law follows directly from the fact that < is multiplicatively order preserving.

Proofs by induction

We conclude this section by giving some examples of how to use the axiom of induc-
tion.

Example 2.1. Show by induction that for n ∈ N we have

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
. (2.3)

Solution. Let M denote the subset of the natural numbers n ∈ N such that (2.3)
holds. By inspection we see that 1 ∈ M . If we assume that n ∈ M we see that

1 + 2 + 3 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

⇔
1 + 2 + 3 + · · ·+ n + (n + 1) =

(n + 1)(n + 2)
2

.

This shows that n ∈ M ⇒ (n + 1) ∈ M , and we conclude by the axiom of induction
that M = N, i.e. (2.3) holds for all natural numbers n.

Exercise 2.2. Let k and n be natural numbers with k ≤ n. By definition
(n

k

)
:=

n!
(n−k)!k! where n! := 1 · 2 · 3 · · · n and by definition (although 0 not really is a natural
number) we let 0! = 1. Show that for all natural numbers k, n with k ≤ n we have(

n + 1
k

)
=

(
n
k

)
+

(
n

k − 1

)
.
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Exercise 2.3. Show the binomial formula

(a + b)n =
n∑

k=0

(
n
k

)
an−kbk

by induction.

Example 2.2. Let us now try to show by induction that the sum

S(n, p) :=
n∑

k=1

kp = 1p + 2p + · · · np,

always is a polynomial in n of degree p + 1.

Solution. We shall prove this using induction over p. Let M be the set of natural
numbers p ∈ N such that S(n, j) is a polynomial in n of degree j + 1 for all j ≤ p.
From the exercise above we conclude that 1 ∈ M .

We now look at the relation

(k + 1)p+1 − kp+1 =

p∑
j=0

(
p + 1

j

)
kj.

Summing over k with k = 1, 2, . . . , n, we get

(n + 1)p+1 − 1 =
n∑

k=1

p∑
j=0

(
p + 1

j

)
kj

=

p∑
j=0

(
p + 1

j

) n∑
k=1

kj =

p∑
j=0

(
p + 1

j

)
S(n, j)

⇔(
p + 1

p

)
S(n, p) = (n + 1)p+1 − 1−

p−1∑
j=0

(
p + 1

j

)
S(n, j).

Assuming that p−1 ∈ M , we see that p ∈ M , and thus by the axiom of induction
M = N.

Of course, above, we get more than a proof of the fact that the sum is a polynomial
in n of a certain degree. We actually get a recursion formula for successively computing
the sums.

Exercise 2.4. Show, for instance by using induction, that

1
1 · 2

+
1

2 · 3
+ · · ·+ 1

n(n + 1)
=

n
n + 1

for all n ∈ N.
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2.2 Integers

As already noted in the introduction to this chapter we immediately run into trou-
ble when we try to solve equations formulated in the system of natural numbers
(N ,+ , · , < ).

It follows (directely from the successor axiom) that given a, b ∈ N with a < b or
a = b, there exists no natural number x such that

x + b = a. (2.4)

We shall now “extend” the system of natural numbers in order to always be able to
solve equations like (2.4) in the extended system.

More precisely we shall try to find a system (Z, ⊕, �, �) satisfying the same
arithmetic rules and almost the same order relation rules as the system of natural
numbers (N, +, ·, <).

Furthermore we shall construct an injection I : N → Z that preserves the order
relation and the algebraic structure, i.e.

I (x + y) = I (x)⊕ I (y), for all x, y ∈ N,

I (x · y) = I (x)� I (y), for all x, y ∈ N and

I (x) � I (y), if x < y.

This will make it possible to identify N with a subset of the extension Z, and once this
is done we shall drop the different notation for the algebraic and order operations on
the extension.

The goal will be to always be able to solve equations l ike (2.4) and we begin with
a formal computation to see what must be done in order to be able to solve equations
like (2.4) and at the same time keep most of the computational rules (then we shall
check if it can be done!).

The simple idea will be to represent the “prospective” solution x to the equation
x + b = a as precisely the pair of natural numbers (a, b). The problem is that if we
have a different pair of natural numbers (a′, b′) that satisfies a′ + b = a + b′, a formal
computation gives that x +b+b′ = a+b′ = a′+b, which by the additive elimination
law implies that x + b′ = a′, and thus x “must also solve” x + b′ = a′. This means
that x can just as well be represented by the pair (a′, b′).

On the other hand if x formally is a solution to both x + b = a and x + b′ = a′,
a similar (formal) computation gives that a′ + b = a + b′.

Motivated by this we shall now try to construct an extension of the natural num-
bers.

Let M = N × N. We define the following relation on M . Let (a, b)R(a′, b′) iff
a + b′ = a′ + b. It is clear that this relation is reflexive i.e. (a, b)R(a, b). From the
commutative law of addition for natural numbers it follows that it is symmetric. If
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now (a, b)R(a′, b′) and (a′, b′)R(a′′, b′′), then a′ + b = a + b′ and a′′ + b′ = a′ + b′′

and thus a′′+ b + (b′+ a′) = a + b′′+ (b′+ a′), which implies that a′′+ b = a + b′′.
This shows that the relation is also transitive, and we conclude that it is an equivalence
relation on M .

Definition 2.1. We define the set of integers, Z, to be the set of equivalence classes
of M under the equivalence relation given above.

Exercise 2.5. Interpret the set of equivalence classes geometrically in N× N.

We try to define the arithmetic operations of addition and multiplication in the
following way,

[(a, b)]⊕ [(a′, b′)] := [(a + a′, b + b′)]

and

[(a, b)]� [(a′, b′)] := [(aa′ + bb′, a′b + ab′)].

(Note that we have suppressed the symbol (·) for the multiplications in N above.)
In order for these operations to be well defined, we must show that the definitions

do not depend on the particular representatives chosen, but in fact if (a, b) ∼ (c, d ),
i.e. (a+d = c +b) and (a′, b′) ∼ (c′, d ′), i.e. (a′+d ′ = c′+b′) then (a+a′, b+b′) ∼
(c + c′, d + d ′), i.e. (a + d + a′ + d ′ = c + b + c′ + b′), which proves that addition
(⊕) is well defined.

Exercise 2.6. Show in the same way that multiplication (�) is well defined.

We extend the order relation on N to Z by defining [(a, b)]� [(a′, b′)] iff a + b′ <
a′+b. This is well defined since if (a, b) ∼ (c, d ), i.e. (a+d = c+b), (a′, b′) ∼ (c′, d ′)
i.e. (a′+d ′ = c′+b′) and a+b′ < a′+b, then a+d ′+c+c′+b′ < a′+d ′+c′+c+b
which (after some manipulation) implies that c + d ′ < c′ + d .

Exercise 2.7. Show that for the system of integers (Z, ⊕, �, �) we have that

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z, (associative law of addition),

x ⊕ y = y ⊕ x, (commutative law of addition),

(x � y)� z = x � (y � z), (associative law of multiplication),

x � y = y � x, (commutative law of multiplication),

∃ ! 1 ∈ Z and 1� x = x, (existence of multiplicative identity),

(x ⊕ y)� z = (x � z)⊕ (y � z), (distributive law ),

x ⊕ y = z ⊕ y ⇔ x = z, (additive cancellation law ),
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The relation (�) linearly orders Z, i.e. given x, y ∈ Z we always have precisely one
of the following alternatives,

x � y or

y � x or

x = y.

Furthermore

x � y and y � z ⇒ x � z, (transitivity),

x � y ⇒ x ⊕ z < y ⊕ z, for any z ∈ Z, (additive order preserving).

The rest of the axioms that hold for the system (N, +, ·, <) are simply not true
for (Z, ⊕, �, �) and it is very illustrative to try to see why they fail to be theorems
for the system (Z, ⊕, �, �).

As may be guessed from our initial formal computation we can now always solve
the following problem. Given y, z ∈ Z find x ∈ Z such that

x ⊕ z = y.

If z = [(c, d )] and y = [(a, b)], a solution is given by x = [(a + d , b + c)].

Exercise 2.8. Show that the solution above is unique.

Let us now define [(a, a)] =: 0 (note that this is independent of a ∈ N), and for
any y ∈ Z, let the unique solution to

x ⊕ y = 0,

be denoted by −y.
We define the positive elements of Z to be the elements y ∈ Z such that 0 � y.

We denote the set of positive integers by Z+.
Given y ∈ Z it is thus true that one and only one of the following alternatives

hold,

0 � y or

0 �−y or

0 = y.

We say that an element y of Z is negative iff −y is positive and we conclude that a
given element y is either positive or negative or zero.
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For the system of integers, (Z, ⊕, �, �) we can now add the following theorems.

∃ ! 0 such that 0⊕ x = x, (existence of additive identity),

∀x, ∃ ! − x such that − x ⊕ x = 0, (existence of additative inverse),

x � y = 0 ⇒ x = 0 or y = 0, (no zero divisors),

x � y ⇒ x � z < y � z for any z ∈ Z+.

We finally define a mapping I from N to Z by

I (a) := [(a + 1, 1)].

Lemma 2.1. The mapping I defined above is an order preserving injection, i.e. it is
injective and

I (a) � I (b) iff a < b, a, b ∈ N.

Furthermore it preserves the arithmetical operations of addition and multiplication, i.e.

I (a + b) = I (a)⊕ I (b), a, b ∈ N, and

I (a · b) = I (a)� I (b), a, b ∈ N.

The proof of this lemma is left as an exercise.

Exercise 2.9. Show that the set of positive elements in Z can be identified with I (N)
for the injection I defined above. From now on we shall therefore identify the positive
elements of Z with N. In doing this we shall also drop the different notations for the
binary relations defined on the two sets (and use (+ , · , <)).

We now give an example of a set of numbers satisfying the same rules of arithmetic
as Z. (They lack some of the structure though, like the order relation.)

Example 2.3. Fix a number n ∈ N. Let x ∼ y iff n | (x − y) (n divides (x − y)). This
is an equivalence relation on Z and the equivalence classes are precisely

Zn := {[0], [1], . . . [n− 1]} .

The algebraic operations of addition an multiplication carry over from Z to Zn in a
natural way. Let

[x]⊕ [y] := [x + y]

and

[x]� [y] := [x · y].

Exercise 2.10. Show that the operations given above on Zn actually are well defined
and that they satisfy more or less the same rules of arithmetic as the corresponding
operations on Z. In particular you could think about when they satisfy the law

x � y = 0 ⇒ x = 0 or y = 0.
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2.3 Rational numbers

Using only integers it is unfortunately still easy to run into trouble. It is in general
impossible to find a solution x ∈ Z to

ax = b, (2.5)

for given a, b ∈ Z. (Take for instance a, b ∈ N with b < a.) We shall now make an
extension of the integers in order to always be able to solve such equations. As before
we shall make a formal computation to see what must be done (and then we shall check
if it is possible to do!).

Let us say that the number x is a solution to two possibly different equations
ax = b and a′x = b′. If we then formally apply the rules of computation that are valid
in Z we immediately conclude that necessarily we must have ab′ = a′b. On the other
hand if ax = b and ab′ = a′b another formal computation gives that a′x = b′. Led
by this computation we try to extend the system of integers in the following way.

Let M = Z×
(
Z \ {0}

)
. We define the following relation on M . Let (a, b)R(c, d )

iff ad = bc.

Exercise 2.11. Show that this is an equivalence relation.

Hint. You will (among other things) need that xy = 0 in Z ⇒ x = 0 or y = 0.

We denote the set of equivalence classes by Q. We then introduce computation
rules on Q by

[(a, b)]⊕ [(c, d )] := [(ad + bc, bd )]

and
[(a, b)]� [(c, d )] := [(ac, bd )].

Exercise 2.12. Show that these operations are well defined, i.e. that they are indepen-
dent of which representatives you choose from each equivalence class when comput-
ing.

Exercise 2.13. Show that all the computation laws for Z also hold in Q. In particular
[(0, 1)] acts as additive identity and [(1, 1)] works as multiplicative identity.

We finally extend the linear order relation (<), from Z to Q by the following
definition.

Given x, y ∈ Q, we can always find representatives (a, b) ∈ x and (c, d ) ∈ y with
0 < b and 0 < d . We then say that x � y iff ad < bc.

Exercise 2.14. Show that this order relation is well defined and satisfies the same rules
as it does on Z (with Z+ replaced by Q+ (the elements in Q greater than zero)).

We now define a mapping from Z to Q by

I : Z 3 a 7→ [(a, 1)] ∈ Q.
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Exercise 2.15. Show that I is an order preserving injection. Furthermore show that I
preserves the algebraic operations, i.e.

I (a + b) = I (a)⊕ I (b), a, b ∈ Z and

I (a · b) = I (a)� I (b), a, b ∈ Z.

This makes it possible to identify Z as a subset of Q. From now on we will make
this identification and often write a instead of I (a) when a ∈ Z. In particular we note
that I (1) is a multiplicative identity and I (0) is a additive identity on Q.

We shall now show that we have indeed accomplished our goal of always being
able to solve equations like (2.5) (even with coefficients in Q!).

Given a, b ∈ Q with a 6= 0, there exists a unique x ∈ Q such that

(a� x) = b.

In fact if a = [a′, a′′] and b = [b′, b′′], a solution is given by x = [b′a′′, a′b′′].

Exercise 2.16. Show that the solution is unique.

Thus we always have a unique multiplicative inverse on Q∗ := Q \ {0}, i.e.

∀x ∈ Q∗, ∃ ! y ∈ Q∗ such that x � y = 1.

We shall from now on use the customary a
b instead of [(a, b)] for the equivalence

class generated by (a, b) ∈ M . Note that x = a
b then is the unique solution to the

equation
I (b)� x = I (a),

when a, b ∈ Z with b 6= 0. We now extend this notation to include also rational
numbers. If a, b ∈ Q with b 6= 0, we denote the unique solution to

b� x = a, by
a
b

.

Exercise 2.17. With notation as above, show that for a, b, c, d ∈ Q we have

a
b
⊕ c

d
=

(a� d )⊕ (c � b)
b� d

,

a
b
� c

d
=

a� c
b� d

and

a
b
c
d

=
a� d
b� c

,

whenever the formulas are well defined, i.e. whenever you do not divide by zero.
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From now on we shall identify Z with its image (under the injection described
above) in Q and we shall drop the difference in notation for the relations (+, · and <)
on the two sets.

Our troubles when trying to solve algebraic equations in our algebraic systems are
actually not over with the introduction of Q. We can solve any linear equation, but
when we turn to nonlinear algebraic equations we still run into trouble. For example,
as we already know, there exists no rational number x such that x2 = 2. In fact it is
easy to prove the following result.

Lemma 2.2. Let a0, a1, . . . an ∈ Z and let x =
p
q , where p, q ∈ Z are relatively prime.

If
anxn + an−1xn−1 + · · ·+ a1x + a0 = 0 , (2.6)

then q divides an and p divides a0.

Proof. Multiplying equation (2.6) with qn we get

anpn + an−1pn−1q + · · ·+ a1pqn−1 + a0qn = 0,

and the result follows.

Exercise 2.18. Use this lemma to give a “new proof” of the fact that x2− 2 = 0 does
not have a rational solution.

We can unfortunately not extend Q in order to be able to solve equations like
x2 − 2 = 0 by some purely algebraic trick as before. In order to deal with this
difficulty we shall have to introduce a notion of distance between numbers, that is we
are forced to introduce topological properties.

Definition 2.2. The absolute value function |·| : Q → Q+ ∪ {0} is defined by
|x| = x if 0 < x, |x| = −x if x < 0 and |0| = 0.

Exercise 2.19. Show the triangle inequality

|x + y| ≤ |x|+ |y| , x, y ∈ Q.

We can now introduce a distance function on Q, by

dQ(x, y) := |x − y| , x, y ∈ Q.

Using the distance function we can talk about convergence of a sequence to a limit.

Definition 2.3. We say that a sequence Z+ 3 k 7→ xk ∈ Q converges to x ∈ Q iff
for any ε ∈ Q+ there exists an n ∈ Z+ such that |x − xk| < ε if n < k. We will then
write xk → x as k → +∞.
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Exercise 2.20. Show that if xk → x as k → +∞, then given any ε ∈ Q+, there exists
an n ∈ Z+ such that

∣∣xj − xk
∣∣ < ε if n < k and n < j.

We now introduce a name for those sequences that “try to converge”.

Definition 2.4. The sequence {xk}∞k=1 is a Cauchy sequence in Q iff given any
ε ∈ Q+, there exists an n ∈ Z+ such that

∣∣xj − xk
∣∣ < ε if n < k and n < j.

Exercise 2.21. Show that every Cauchy sequence {xk}∞k=1 in Q is bounded, i.e. there
exist constants A,B ∈ Q such that

A < xk < B, k ∈ Z+.

The problem when for instance solving equations in Q is that all sequences that
tries to converge do not succeed. Let us illustrate this by a look at Newton’s method
for solving (nonlinear) equations.

The basic idea in Newton’s method is to locally, around an approximative solution,
approximate the nonlinear equation with a linear one. Then solve (which we always
can!) the linear equation and in this way hopefully get a better approximation to the
true solution.

The strategy will be clarified later on, when we discuss linearization, and have all
the tools from differential calculus at hand, but we give the main argument here:

Let us say that we try to solve the equation

f (x) = 0, (2.7)

for a given f : Q → Q. Of course not all equations are solvable, but assume that we
already have an approximative solution a. How can we obtain a better approximative
solution?

We first observe that for h 6= 0 we have

f (a + h) = f (a) +
f (a + h)− f (a)

h
h⇔

f (a + h) = f (a) + kh +

(
f (a + h)− f (a)

h
− k
)

h , (2.8)

for any k ∈ Q. We now rewrite (2.7) as an equation in h,

f (a) + kh +

(
f (a + h)− f (a)

h
− k
)

h = 0.

If k 6= 0, we can always solve
f (a) + kh = 0.

Chosing

h = − f (a)
k
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in (2.8) we get that

f (a + h) =

(
f (a + h)− f (a)

h
− k
)

h.

The idea is now that if we can choose k (independent of h) such that k is bounded
away from zero and such that f (a+h)−f (a)

h − k is small, then a + h = a − f (a)
k will

possibly be a better approximation to f (x) = 0 than a.

Remark. For a differentiable function we will later see that, when we are close to a
solution, k = f ′(a) will be the natural choice above.

Example 2.4. Let us illustrate Newton’s method by trying to solve

x2 − 2 = 0

in Q.
Set f (x) = x2 − 2. We maybe guess that we should have a solution x ∈ Q to

f (x) = 0 with 1 < x < 2. We now pick an initial approximative solution a ∈ Q with
1 < a < 2 and set ε :=

∣∣a2 − 2
∣∣ (this is the error). Since

f (a + h)− f (a) = 2ah + h2,

and thus (
f (a + h)− f (a)

h
− k
)

h = 2ah + h2 − kh,

we see that by choosing k = 2a, which implies h = − a2−2
2a in our scheme above, we

get
f (a + h) = h2,

i.e.

f (a− a2 − 2
2a

) = (
a2 − 2

2a
)2.

We conclude that (with h = − a2−2
2a and ε =

∣∣a2 − 2
∣∣, and since a > 1)

0 ≤ f (a + h) ≤ (
ε

2
)2.

If ε is small we have obtained a much better approximative solution to our equation.
(Note also that 1 < a < 2 ⇒ 1 < a− a2−2

2a < 2.)
We can now iterate this scheme, setting

x0 = a,

xk+1 = xk −
x2

k − 2

2xk
, k ∈ Z+.
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Exercise 2.22. Show that the sequence {xk}∞k=1 defined above is a Cauchy sequence
in Q.

If the sequence {xk}∞k=1 defined above converges in Q to some z ∈ Q, i.e. xk → z
as k → +∞, then ∣∣z2 − 2

∣∣ ≤ ∣∣z2 − x2
k

∣∣+
∣∣x2

k − 2
∣∣ .

Here the right hand side goes to zero (why?) as k tends to infinity, which implies that
z2 = 2. The problem is of course that there exists no such rational number z.

We shall remedy the problem by another enlargement of our universe of numbers.
Following Cantor we shall construct the real numbers starting from the rational ones.

That this enlargement in a certain way is different from the previous ones, can for
instance be seen by the fact that N, Z and Q all are countable sets, whereas R will be
seen to be uncountable.

Definition 2.5. We say that a given set S is countable iff there exists a bijective
function f : N→ S, i.e. iff #S = #N. If #N < #S, the set S is said to be uncountable.

Exercise 2.23. Show that Z and Q both are countable sets.
(The result that Q is countable is a famous result by G. Cantor.)

2.4 Real numbers

The basic idea in order to be able to solve for instance equations like x2 = a (where
(0 < a)) is to simply take sequences of approximative solutions in Q that tries to
converge to the prospective solution as a definition of the solution. We shall then have
to identify different sequences of approximative solutions to the same equation. We
now make this precise.

Let M be the set of Cauchy sequences in Q.

Definition 2.6. We say that two Cauchy sequences {xk}∞k=1 and {yk}∞k=1 are equiva-
lent iff

|xk − yk| → 0 as k → +∞,

i.e. for any ε ∈ Q+ there exists an n ∈ Z+ such that |xk − yk| < ε if k > n.

Exercise 2.24. Show that this defines an equivalence relation on M .

Definition 2.7. Let Rdenote the set of equivalence classes.

Exercise 2.25. Show that the sum and product of two Cauchy sequences in Q are
Cauchy sequences in Q.

Hint. You have to use the fact that a Cauchy sequence is bounded.
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We can now extend the algebraic operations of addition and multiplication from
Q to R in the following way.

Definition 2.8.
[{xk}∞k=1]⊕ [{yk}∞k=1] := [{xk + yk}∞k=1]

and
[{xk}∞k=1]� [{yk}∞k=1] := [{xk · yk}∞k=1]

Exercise 2.26. Show that these operations are well defined, i.e. that they do not
depend on the particular representatives chosen.

Exercise 2.27. Show that “all the arithmetical rules for addition and multiplication”
holding in Q, also hold in R, where the additative identity is defined as the equiva-
lence class of the constant Cauchy sequence {0}∞k=1, and the multiplicative identity is
defined correspondingly.

We can also extend our order relation (<) on Q to R by defining

[{xk}∞k=1] � [{yk}∞k=1]

iff there exists an n ∈ Z+ and an ε ∈ Q+ such that

xk + ε < yk

if k > n.

Exercise 2.28. Check that the order relation is well defined.

The order relation on R will satisfy the same laws as the order relation on Q.
In particular given two element r1 and r2 in R one (and only one) of the following
statements is true

r1 � r2 or

r2 � r1 or

r1 = r2.

We define a mapping from Q to R by

I : Q 3 a 7→ [{ak}∞k=1], where ak = a for k = 1, 2, 3, . . ..

Exercise 2.29. Show that I is an order preserving injection and that it preserves the
algebraic operations, i.e.

I (a + b) = I (a)⊕ I (b), a, b ∈ Q, and

I (ab) = I (a)� I (b), a, b ∈ Q.
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This makes it possible to identify Q with a subset of R. From now on we shall
make this identification and speak of Q as a subset of R. I will only use the identifica-
tion map I or different notations for the binary relations (+ , · , <) when I think that
it makes an argument more transparent.

We extend the absolute value function from Q to R by defining

|[{xk}∞k=1]| := [{|xk|}∞k=1].

Exercise 2.30. Show that this is well defined. (First you have to show that if {xk}∞k=1
is a Cauchy sequence in Q, then {|xk|}∞k=1 is so as well.)

Note that we have
|I (q)| = I (|q|), q ∈ Q,

and thus

I (|x − y|) = |I (x)− I (y)| , x, y ∈ Q, (I is an isometry.)

Exercise 2.31. Show that the triangle inequality for the absolute value function, as
defined above, holds in R.

Lemma 2.3. Given any real numbers r1 < r2, there exists a q ∈ Q such that

r1 < I (q) < r2.

Proof. Let ri = [{ri
k}
∞
k=1] for i = 1, 2. Then we know that r1

n + ε < r2
n if n > N

for some N ∈ Z+ and ε ∈ Q+. By possibly taking a larger N we may arrange so that

also r1
n − ε4 < r1

N < r1
n + ε

4 when n ≥ N . Now put q =
2r1

N+ε
2 .

We define the positive real numbers by

R+ := {x ∈ R ; x > 0} ,

and we make the following definition.

Definition 2.9. The sequence {xk}∞k=1 is a Cauchy sequence in R iff given any ε ∈
R+, there exists an n ∈ N such that

∣∣xj − xk
∣∣ < ε if k > n and j > n.

Using Lemma 2.3 and the fact that I is an order preserving isometry, we see that,
given a sequence {qj}∞j=1 in Q, the corresponding sequence {I (qj)}∞j=1 is a Cauchy
sequence in R iff {qj}∞j=1 is a Cauchy sequence in Q. Thus this new definition is
consistent with our old definition when we regard Q as a subset of R.

Definition 2.10. A sequence {xk}∞k=1 in R converges to x ∈ R iff given any ε ∈ R+,
there exists an n ∈ N such that

∣∣xj − x
∣∣ < ε if j > n.
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Exercise 2.32. Show that if a subsequence {xkj}∞j=1 of a Cauchy sequence converges
to some point x ∈ R, then this is true for the entire original sequence.

In marked contrast with Q, every sequence that tries to converge in R succeeds. A
“space” where this is true is called a complete space and this property of completeness
of R will be very important when trying to prove existence of solutions to a variety of
equations and in particular our motivation equation x2 = a.

Theorem 2.4. Every Cauchy sequence in R converges to a unique element in R.

Proof. Let {X k}∞k=1 be a Cauchy sequence in R. Let’s say

X k = [{xk
j }∞j=1], k = 1, 2, 3, . . .

Using Lemma 2.3 we can find a sequence N 3 j 7→ qj ∈ Q such that∣∣X j − I (qj)
∣∣ < I (2−j), j ∈ N.

This means that there exist a δ ∈ Q+ and an n(j, δ) ∈ N such that∣∣∣xj
k − qj

∣∣∣+ δ < 2−j, k > n.

Exercise 2.33. Show that {qj}∞j=1 is a Cauchy sequence in Q.

Thus q := [{qj}∞j=1] is a well defined real number. We claim that {X k}∞k=1
converges to q. In fact, given ε ∈ Q+ we have that∣∣∣xj

k − qk

∣∣∣ ≤ ∣∣∣xj
k − qj

∣∣∣+
∣∣qj − qk

∣∣ < ε
4

+
∣∣∣xj

k − qj

∣∣∣ ,
if k, j > n1 for some n1 ∈ N.

Thus fixing j > n1 big enough, we have∣∣∣xj
k − qk

∣∣∣ < ε
2
,

if k > n2 for some n2 ∈ N. This implies that∣∣X j − q
∣∣ < ε,

for our fixed j > n1. This means that, (using Lemma 2.3) we can extract a subsequence
of {X k}∞k=1 that converges to q, but since our original sequence is a Cauchy sequence,
the theorem follows from the triangle inequality.
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We can now prove things like the axiom of upper bound.

Definition 2.11. Let S be a set of real numbers. We say that M is an upper bound
(lower bound) for S iff s ≤ M for all s ∈ S (s ≥ M for all s ∈ S), and we say that a
set having an upper (lower) bound is bounded from above (below).

We state the following theorem for upper bounds, but the reader should think
through the corresponding result for lower bounds, where a largest lower bound is
denoted infs∈S s.

Proposition 2.5. Any set S ⊂ R having an upper bound has a least upper bound, which
we denote by sups∈S s. This means that sups∈S s is an upper bound and given any upper
bound M we have that sups∈S s ≤ M.

Remark. If the set has no upper bound we say that the least upper bound is plus
infinity, i.e. sups∈S s = +∞, and if the set happens to be empty sups∈S s = −∞, and
with these conventions any set of real numbers has a least upper bound.

Proof. We may assume that S is nonempty.
Let M be an upper bound for S, and put M0 = M . Now recursively, for every

n ∈ N, take the largest k ∈ 0, 1, 2, . . . such that Mn−1 − k
2n is an upper bound

for S and for this largest k put Mn := Mn−1 − k
2n . (That every bounded set of

natural numbers has a largest member is a consequence of the axiom of induction
together with the fact that, given two distinct natural numbers, one will be bigger
than the other.) The sequence {Mn}∞n=1 is decreasing and, by the construction, for
any given Mn we can find a point s ∈ S such that |Mn − s| ≤ 2−n. It follows that
|Mn −Mm| ≤ max(2−m, 2−n) and thus that {Mn}∞n=1 is a Cauchy sequence. Since
R is complete there exists a limit M∞ such that Mn → M∞ as n → ∞. Check that
M∞ is a least upper bound!

Before commenting on our motivation equation, just a small comment concerning
notation. Given a, b ∈ R with a 6= 0 we can (precisely as in Q) always solve the
equation

ax = b,

and we shall (as in Q) denote the unique solution x ∈ R by b
a . This implies that

a
b

+
c
d

=
ad + cb

bd
,

a
b

c
d

=
ac
bd

and
a
b
c
d

=
ad
bc
,

whenever the formulas are well defined.
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Exercise 2.34. Given a ∈ R with 0 < a, show that there always exists a solution
x ∈ R to the equation x2 = a.

Exercise 2.35. Using for instance the decimal representation of real numbers (which
corresponds to selecting a specific Cauchy sequence from the equivalence class repre-
senting a given number), show that the set of real numbers in uncountable.

(This is a famous result by G. Cantor. We will later be able to give another proof
of this fact using the so called Baire category theorem.)

Working only in R, we can still run into problems. It is for instance clear that we
have no solution to the equation

x2 + 1 = 0.

We will in the next section make the final extension.

2.5 Complex numbers

Simply adding a prospective, or why not let’s say imaginary, solution x to the equation
x2 + 1 = 0 to the system of real numbers, and computing formally with expressions
like a + bx, substituting x2 with −1 as soon as it appears, leads us to the following
definition.

Definition 2.12. Let the complex numbers be the set C := R × R, and define the
arithmetic operations by

(a, b)⊕ (c, d ) = (a + c, b + d )

and
(a, b)� (c, d ) = (ac − bd , ad + bc).

We then have the following remarkable result.

Exercise 2.36. Show that all the usual arithmetical laws for addition and multiplica-
tion holding in R, also hold in C, when (0, 0) is the identity for addition, and (1, 0)
the identity for multiplication in C.

We now define a mapping I : R→ C by

I (a) := (a, 0).

Exercise 2.37. Show that I is injective. Furthermore show that I preserves the alge-
braic operations, i.e.

I (a + b) = I (a)⊕ I (b), a, b ∈ R and

I (ab) = I (a)� I (b), a, b ∈ R.
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(Note that we do not have any order relation on C.)
We can thus identify real numbers as a subset of the complex numbers when

computing, and we shall from now on make this identification and write a instead of
I (a) when a ∈ R even when we regard it as a complex number, and we shall denote
the binary relations in the usual way.

Working in C, we can now solve the equation x2 + 1 = 0, for instance (0, 1) ·
(0, 1) + (1, 0) = (0, 0).

In fact we can do much more.
The following beautiful result shows that we, in some sense, have reached the end

of our quest for solvability of simple algebraic equations.

Theorem 2.6. Given n ∈ N and a0, a1, . . . , an ∈ C with an 6= 0, there exists a z ∈ C
such that

anzn + an−1zn−1 + · · ·+ a1z + a0 = 0.

Although this theorem is called the fundamental theorem of algebra, one must use
topological arguments to prove it.

Gauss gave what he called “a new proof” of this theorem in his dissertation in
1799, and he certainly did more for this theorem than anyone else, but his proofs (he
actually gave at least three different proofs of this result during his lifetime) were in a
sense just as flawed as some of the earlier attempts. We shall later, when we have all
the necessary tools in place, give a proof by d’Alembert that dates from 1746. The
key ingredient that missed in all proof–attempts was the intermediate value property
for continuous functions from R to R, which of course is quite natural since math-
ematicians at that time lacked precise definitions of both what a real number and a
continuous function are.
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Chapter 3

Topology

Abstractness is not always popular. People ask, “Why have an abstract
theory?” If you make the mistake of replying, “Why not?”, then you re-
ally hear about it – how we must be cold, calculating monsters, . . . , who
ignore the individual and destroy his freedom. I make a point of reply-
ing with a different question. Have you heard about the geometer, who
states a theorem, thinks hard for a while and then suddenly announces,
“It’s obvious”?

From Laurence Young’s “Mathematicians and their times” (1981).

A topological property of a set is loosely speaking a property that is preserved
under continuous deformations, and a continuous function f : X → Y is a function
that maps points sufficiently close to each other in X to points close to each other in
Y . To make this precise we shall first have to discuss what we should mean by close.
We begin by studying metric spaces and then go on to briefly discuss more general
topological spaces.

3.1 Metric spaces

Basic properties

Using the absolute value function on R we can define a distance function on R × R
by

d (x, y) := |x − y| .

We note the following properties of the function d : R× R→ [0,∞),

d (x, y) ≥ 0, with equality iff x = y,

d (x, y) = d (y, x), (symmetry),

d (x, z) ≤ d (x, y) + d (y, z), (the triangle inequality).
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Definition 3.1. A metric space (M , dM ) is a non empty set M together with a dis-
tance function, a metric, dM : M ×M → [0,∞) such that

dM (x, y) ≥ 0, with equality iff x = y,

dM (x, y) = dM (y, x), (symmetry),

dM (x, z) ≤ dM (x, y) + dM (y, z), (the triangle inequality).

Often we only write M for the metric space (M , dM ), when it is clear from the
context that we consider the set M together with a specific metric dM . (Note however
that the same set usually can be equipped with many different metrics, and thus made
into a metric space in many different ways.)

We have already seen that R with the metric defined above is an example of a
metric space. Another simple example is the following.

Example 3.1. Let M be any non empty set and define

dM (x, y) =

{
0 if x = y
1 if x 6= y.

Exercise 3.1. Show that this defines a metric space.

This metric is called the discrete metric on M .

Exercise 3.2. Let (M , d ) be a metric space. Show that

|d (m, n)− d (n, o)| ≤ d (m, o) for all m, n, o ∈ M .

There are several ways to construct new metric spaces from given ones.
For instance, given a metric space M we can construct a lot of natural subspaces

of M . In fact, if N is any non empty subset of a metric space M , then N itself is a
metric space with the metric inherited from M . We then call N a metric subspace of
M .

Also, given metric spaces M1,M2, . . . ,MN , we can define the following metric on
the product set

d (m, n) := sup
1≤k≤N

dMk
(mk, nk)

when m = (m1,m2, . . . ,mN ) and n = (n1, n2, . . . , nN ) belong to the product set
M1 ×M2 × · · · ×MN .

Exercise 3.3. Check that the expression above indeed is a metric on the product set.

Definition 3.2. Let M be a given set, let N be a metric space and let f be a function
from M to N . We say that f is bounded, and we write f ∈ FB(M ,N ) iff there exists
a point m0 ∈ M such that

sup
m∈M

dN (f (m), f (m0)) <∞.
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Exercise 3.4. Show that if f ∈ FB(M ,N ), then

sup
m∈M

dN (f (m), f (m̃)) <∞

for every m̃ ∈ M .

We can now make the set FB(M ,N ) into a metric space by defining

d (f , g) := sup
m∈M

dN (f (m), g(m)),

when f , g ∈ FB(M ,N ).

Exercise 3.5. Show that this indeed is a metric on FB(M ,N ).

Starting for example from the metric space R, equipped with the standard metric
it is thus possible to construct a wealth of different metric spaces. (We shall later
comment on how to distinguish between given metric spaces, i.e. what the word
different above actually should mean.)

Definition 3.3. Let (M , dM ) be a metric space. The open ball with center a ∈ M
and radius r > 0, Br(a), is defined as the set of points in M with distance less than r
from a, i.e.

Br(a) := {x ∈ M ; dM (x, a) < r} .

Note that we always have a ∈ Br(a), so that Br(a) is always non empty. This can
be the only point in Br(a) though.

Example 3.2. With the discrete metric on a non empty set M we have that

Br(a) =

{
{a} if r ≤ 1
M if r > 1.

Definition 3.4. Let M be a metric space. A set O in M is open iff

a ∈ O ⇒ there exists an r > 0 such that Br(a) ⊂ O.

Exercise 3.6. Show that for any metric space M , both the empty set, ∅, and the whole
set M are open.

The following result shows that we have not misnamed the open balls.

Lemma 3.1. In every metric space M an open ball Br(a) is an open set.

Proof. Take a point b ∈ Br(a). Then d (a, b) = r0 < r. We claim that Br−r0(b) ⊂
Br(a). In fact if c ∈ Br−r0(b), by the triangle inequality we get that

d (a, c) ≤ d (a, b) + d (b, c) < r0 + (r − r0) = r.
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Lemma 3.2. Let M be a metric space. Then O ⊂ M is open iff O is a union of open
balls.

Proof. If O ⊂ M is open then given a ∈ O there exists an open ball Bra(a) ⊂ O and
thus

O = ∪a∈OBra(a).

On the other hand if O is the union of a collection of open balls, then

O = ∪α∈I Brα(aα),

for some index set I , and if a ∈ O, then a belongs to at least one of these open
balls.

We can in fact prove

Theorem 3.3. Every union of open sets is an open set, and every finite intersection of open
sets is an open set.

Proof. Assume that
O = ∪α∈I Oα,

for some collection of open sets {Oα}α∈I . Now if a ∈ O, then a belongs to at least
one of these open sets a ∈ Oβ , and thus there exists an open ball Br(a) ⊂ Oβ and we
conclude that Br(a) ⊂ O. Thus O is open.

Now assume that
O = ∩n

j=1Oj,

for some finite collection of open sets {Oj}1≤j≤n. If a ∈ O, then a ∈ Oj for all
1 ≤ j ≤ n. There exist open balls Brj (a) ⊂ Oj, for j = 1, 2, . . . , n. Then if
r = min(r1, r2, . . . , rn), we conclude that Br(a) ⊂ ∩n

j=1Oj = O.

Given any set A in a metric space M , we notice that ∅ ⊂ A, and thus (since ∅
is open) the collection of open sets contained in A is nonempty. Since any union of
open sets is open, there exists a largest open set contained in A. Thus the following
definition is consistent.

Definition 3.5. Given a set A in a metric space, we define the interior of A to be the
largest open set contained in A and we denote it by A◦.

Exercise 3.7. Let A be a subset of a metric space M . Show that a ∈ A◦ iff there exists
a nonempty open ball Br(a) ⊂ A.

Exercise 3.8. Let M be a metric space and assume that a, b ∈ M with a 6= b. Show
that there exist open sets U and V in M such that a ∈ U , b ∈ V and U ∩ V = ∅.

This exercise implies that for any given point a ∈ M , the complement of the (one
point) set {a} is open.
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Definition 3.6. Let M be a metric space. We say that C ⊂ M is closed iff the
complement C c is open.

It follows that for any metric space M , both M and the empty set are closed.

Theorem 3.4. Every intersection of closed sets is a closed set, and every finite union of
closed sets is a closed set.

Proof. The result follows immediately from Theorem 3.3 and the fact that

(∩α∈I Aα)c = ∪α∈I Ac
α

and
(∪α∈I Aα)c = ∩α∈I Ac

α
,

hold for general sets.

Given any set A in a metric space M , we can look at the family of closed sets in
M containing A. Since any intersection of closed sets is a closed set, it is clear that we
always have a smallest closed set in M containing A.

Definition 3.7. Let M be a metric space and let A be a subset of M . The closure of
A is defined as the smallest closed set in M containing A. We denote it by Ā.

Exercise 3.9. Show that
(Ac)◦ = (Ā)c.

Note that we actually could have used this formula to define the closure.

Exercise 3.10. Show that a set A ⊂ M is closed iff Ā = A.

Definition 3.8. Let M be a metric space and let S ⊂ M be a subset. We define the
diameter of S to be

diam(S) := sup{dM (x, y), x, y ∈ S}.

Definition 3.9. Let M be a metric space and let S ⊂ M be a subset. We say that S is
bounded iff diam(S) <∞.

Exercise 3.11. Given metric spaces M and N and a function f : M → N , show that
f is bounded, i.e. f ∈ FB(M ,N ) iff f (M ) is a bounded set in N .

Definition 3.10. Let M be a metric space. A subset A ⊂ M is dense in M iff Ā = M .

Exercise 3.12. Let M be a metric space. Show that a subset A ⊂ M is dense in M iff
given any m ∈ M and ε > 0, Bε(m) ∩ A 6= ∅.
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With the usual metric on R, we recall that we have proved that the set of rational
numbers Q is a dense subset of R.

Since (Ā)◦ = M if A is a dense set in a metric space M , the following property
can, more or less, be seen as the opposite to the property of being dense.

Definition 3.11. Let M be a metric space. A subset A ⊂ M is nowhere dense in M
iff (Ā)◦ = ∅.

Exercise 3.13. Show that if A is a nowhere dense subset of a metric space M , then the
complement Ac is dense in M .

Show also that the converse is false, i.e. that if A is dense, it is not in general true
that the complement of A is nowhere dense.

Exercise 3.14. Let M be a metric space. Show that a subset A is nowhere dense in M
iff the open set (Ā)c is dense in M .

Exercise 3.15. Show that a finite union of nowhere dense sets is nowhere dense.

If we take finite unions of nowhere dense sets the result is thus again a nowhere
dense set, but if we take countable unions of nowhere dense sets, for instance {q}q∈Q

as a subset of R, the result can, as we see by this example, actually be dense.
Even if Q is a dense subset of R, it is actually a small subset. It is for instance

countable, whereas R and for that matter R \Q both are uncountable. We shall (after
we have discussed convergence of sequences in the next section) be able to express the
fact that Q is a small subset of R in a slightly different way by using the following
terminology.

Definition 3.12. Let M be a metric space. A subset A ⊂ M is meager (or of the first
category) iff it is a countable union of nowhere dense sets.

Exercise 3.16. Show that a countable union of meager subsets of a metric space is a
meager subset.

Note that Q is a dense and meager subset of R. We shall in the next section prove
that R itself is not meager. (This will follow as a result of the fact that R is complete,
i.e. that every Cauchy sequence in R converges.)

We end this section with a last definition.

Definition 3.13. Let M be a metric space. We say that m ∈ M is a limit point of a
set A ⊂ M iff for any ε > 0, Bε(m) ∩ (A \ {m}) 6= ∅.

Lemma 3.5. Let M be a metric space. A set A ⊂ M is closed iff it contains all its limit
points.
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Proof. Assume first that A is closed. This means precisely that the complement Ac

is open. A point in Ac can not be a limit point of A since we can find an open ball
around it contained entirely in Ac. Thus all limit points of A belong to A.

On the other hand assume that A contains all its limit points. Given a ∈ Ac, there
must exist an open ball Br(a) ⊂ Ac, since otherwise a would be a limit point of A and
thus actually belong to A. This implies that Ac is open and thus by definition that A
is closed.

Exercise 3.17. Show that a subset A ⊂ M is dense in M iff every point in M \ A is a
limit point of A.

Sequences and convergence

In this section we will discuss sequences in a general metric space.

Definition 3.14. Let M be a metric space and let {xk}∞k=1 be a sequence of points
in M . We say that {xk}∞k=1 converges to a point x∞ ∈ M iff for every ε > 0 there
exists an n ∈ N such that xk ∈ Bε(x∞) if k > n. In this case we write xk → x∞ when
k →∞ and we call x∞ a limit of the sequence.

We note that if xk → x∞ in M when k →∞, then either x∞ is limit point of the
set corresponding to the sequence, or there exists an n ∈ N such that xk = x∞ when
k > n.

Lemma 3.6. A limit of a sequence in a metric space (M , dM ) is unique, i.e. if xk → x∞
and xk → y∞ in M when k →∞, then x∞ = y∞.

Proof. The triangle inequality gives

dM (x∞, y∞) ≤ dM (x∞, xk) + dM (xk, y∞).

By choosing k large enough, the right hand side above is arbitrarily small, which im-
plies that the left hand side is zero.

Definition 3.15. The sequence {xk}∞k=1 is a Cauchy sequence in M iff given any
ε > 0, there exists an n ∈ N such that d (xj, xk) < ε if k > n and j > n.

Lemma 3.7. If a sequence {xk}∞k=1 in M converges to a point x∞ ∈ M, then {xk}∞k=1 is
a Cauchy sequence.

Proof. The triangle inequality gives

d (xk, xj) ≤ d (xk, x∞) + d (x∞, xj).

Given ε > 0, pick n such that d (xk, x∞) < ε

2 when k > n. We conclude that

d (xk, xj) ≤ d (xk, x∞) + d (x∞, xj) < ε if j, k > n.
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Thus a convergent sequence is always a Cauchy sequence. The converse statement
is not always true.

Example 3.3. The set of rational numbers Q is a metric space with the metric defined
by

d (x, y) = |x − y| , x, y ∈ Q.

As we already know, there are a lot of Cauchy sequences in Q that will not succeed in
converging to any element in Q.

Exercise 3.18. Show that if a subsequence of a Cauchy sequence converges, then the
whole original sequence converges.

We now name the metric spaces where sequences trying to converge succeed.

Definition 3.16. A metric space M is complete iff every Cauchy sequence in M
converges.

We recall that the set of real numbers R, with the metric coming from the absolute
value function, is a complete metric space.

Exercise 3.19. Let M be a complete metric space. Show that a subspace N (with the
metric inherited from M ) is complete iff it is closed.

Lemma 3.8. Let M and N be metric spaces, then the metric space FB(M ,N ) is complete
if N is complete.

Proof. Let {fk}∞k=1 be a Cauchy sequence in FB(M ,N ). Then for any m ∈ M the
sequence {fk(m)}∞k=1 is a Cauchy sequence in N . Since N is complete, there exists a
limit fm ∈ N . This defines a function f : M 3 m 7→ fm ∈ N . Given ε > 0,

dN (f (m), fk(m)) = lim
j→∞

dN (fj(m), fk(m)) ≤ ε, for all m ∈ M ,

if k ≥ N (ε). This shows that f is a bounded function and that

sup
m∈M

dN (f (m), fk(m))→ 0, when k →∞.

Exercise 3.20. Let M be a complete metric space and let {Bk}∞k=1 be a family of
nonempty closed subsets of M such that Bk+1 ⊂ Bk for all k ∈ N and such that
diam(Bk)→ 0 when k →∞. Show that ∩∞k=1Bk 6= ∅.

We are now ready to prove a fundamental result valid in complete metric spaces
called Baire’s category theorem.

(It will be indispensable later when we for instance prove Banach’s open map-
ping theorem, i.e. that the inverse of a bijective continuous linear map necessarily is
continuous.)
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Theorem 3.9. If {Gk}∞k=1 is a countable family of dense and open subsets in a complete
metric space M, then the intersection ∩∞k=1Gk is dense in M.

Proof. Let {Gk}∞k=1 be a countable family of dense and open subsets of M .
Now take any nonempty closed ball B in M . The theorem will be proved if we

can show that ∩∞k=1Gk ∩ B 6= ∅.
By hypothesis we know that (B)◦∩G1 is a nonempty open set in M . Thus we can

find a smaller nonempty closed ball B1 ⊂ B ∩ G1, where we always can assume that
diam(B1) ≤ 1

2 diam(B).
Now since, again by hypothesis, we know that (B1)◦ ∩G2 is a nonempty open set

in M , we can find an even smaller nonempty closed ball B2 ⊂ B1 ∩ G1 ∩ G2, where
we also can assume that diam(B2) ≤ 1

2 diam(B1). Repeating this argument we get a
decreasing sequence of nonempty and closed balls whose diameters go to zero. Since
M is complete we know that ∩∞k=1Bk 6= ∅. Since ∩∞k=1Bk ⊂ ∩∞k=1Gk∩B, the theorem
follows.

Exercise 3.21. Show that Baire’s category theorem has the following equivalent for-
mulation: If M is a complete metric space, then the complement of a meager subset
of M is necessarily dense in M .

Remark. Often we are just interested in the immediate corollary that a complete metric
space never in itself can be a meager set.

Exercise 3.22. Show, by using Baire’s category theorem, that R is uncountable.

Recall that we constructed the complete metric space R as the set of equivalence
classes of Cauchy sequences from the non-complete metric space Q. This construction
can be generalized.

Theorem 3.10. Let (M , dM ) be a metric space. Then there exist a complete metric space
(M̃ , d M̃ ) and a map I : M → M̃ such that

1. I (M ) is dense in M̃ .

2. dM (m, n) = d M̃ (I (m), I (n)), m, n ∈ M .

Proof. Two Cauchy sequences {mk}∞k=1 and {nk}∞k=1 in M are called equivalent iff
dM (mk, nk) → 0 when k → ∞. This is an equivalence relation on the set of Cauchy
sequences in M . We define the set M̃ to be the set of equivalence classes.

Now if {mk}∞k=1 and {nk}∞k=1 are two Cauchy sequences in M , then the sequence
dM (mk, nk) is a Cauchy sequence in R (prove this!) and since R is complete the limit
limk→∞ dM (mk, nk) exists in R.

We also note that if the sequences {mk}∞k=1 ∼ {m̃k}∞k=1 and {ñk}∞k=1 ∼ {nk}∞k=1,
then limk→∞ dM (mk, nk) = limk→∞ dM (m̃k, ñk) (prove this!).
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This makes it legitimate to define the following function on M̃ × M̃ :

d M̃ ([{mk}∞k=1], [{nk}∞k=1]) := lim
k→∞

dM (mk, nk).

From the fact that (M , dM ) is a metric space it is now straight forward to prove that
also (M̃ , d M̃ ) is a metric space (do it!).

We define the imbedding I : M → M̃ by

I (m) := [{m}∞k=1],

i.e. the equivalence class for the appropriate constant sequence. It is immediate that

d M̃ (I (m), I (n)) = dM (m, n), m, n ∈ M .

Finally to prove that I (M ) is dense in M̃ , we take an element m̃ ∈ M̃ and an ε > 0.
If, let’s say, m̃ = [{mk}∞k=1], we take N ∈ N such that dM (mk,mj) < ε/2 if j, k ≥ N .
Then d M̃ (I (mN ), m̃) = limk→∞ dM (mk,mN ), which by construction is less than ε.

To show that M̃ is a complete metric space, we take a Cauchy sequence {m̃k}∞k=1
in M̃ . Since I (M ) is dense in M̃ we can find a sequence {mk}∞k=1 in M such that

d M̃ (m̃k, I (mk)) ≤ 2−k.

Check that {mk}∞k=1 is a Cauchy sequence.
To conclude the proof we shall now show that

m̃k → [{mj}∞j=1] as k →∞.

In fact we have that

d M̃ (m̃k, [{mj}∞j=1]) ≤ d M̃ (m̃k, I (mk)]) + d M̃ (I (mk), [{mj}∞j=1]).

Choosing k big enough we can make both the last terms arbitrarily small.

We shall see below that the completion M̃ of the space M , essentially (that is up
to an isometry) is unique.

Continuity

Definition 3.17. Let (M , dM ) and (N , dN ) be two metric spaces. A function f :
M → N is continuous at a point a ∈ M iff for any ε > 0 there exists a δ > 0 such
that

f (Bδ(a)) ⊂ Bε(f (a)),

i.e.
dN (f (x), f (a)) < ε if dM (x, a) < δ.

Note that in general δ(ε, a).
The function is said to be continuous if it is continuous at all points in M .
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Lemma 3.11. Let (M , dM ) and (N , dN ) be two metric spaces. A function f : M → N
is continuous at a point a ∈ M iff for all sequences {xk}∞k=1 in M we have that

xk → a when k →∞ ⇒ f (xk)→ f (a) when k →∞.

Remark. This last property is called sequential continuity, and the lemma thus states
that sequential continuity and continuity are the same (in metric spaces).

Proof. We first assume that f is continuous at a point a ∈ M , and that xk → a. Then
given ε > 0, there exists a δ > 0 such that dN (f (x), f (a)) < ε if dM (x, a) < δ.
Thus if k is so large that dM (xk, a) < δ we conclude that dN (f (xk), f (a)) < ε which
proves sequential continuity.

On the other hand assume that f fails to be continuous at a point a ∈ M . Then
there exists an ε0 > 0 and a sequence of points xk ∈ M such that dM (xk, a) < 2−k

while at the same time dN (f (xk), f (a)) ≥ ε0. This contradicts sequential continuity.

Lemma 3.12. Let (M , dM ) and (N , dN ) be two metric spaces. A function f : M → N
is continuous iff f −1(U ) is open in M if U is open in N , i.e. iff the inverse images of open
sets are open.

Proof. We first note that

f (Bδ(a)) ⊂ Bε(f (a)) ⇔ Bδ(a) ⊂ f −1(Bε(f (a))).

Now Bε(f (a)) is an open set in N and if the inverse image, which clearly contains a,
is open there exists a δ such that Bδ(a) ⊂ f −1(Bε(f (a))). On the other hand, if f
is continuous, U is an open set in N , and a ∈ f −1(U ), then there exists an ε > 0
such that Bε(f (a)) ⊂ U . Since f is continuous we can now find a δ > 0 such that
Bδ(a) ⊂ f −1(Bε(f (a))), in particular Bδ(a) ⊂ f −1(U ), which shows that f −1(U ) is
open.

Definition 3.18. Let M and N be metric spaces. Let CB(M ,N ) denote the set of
bounded and continuous functions from M to N . The set CB(M ,N ) is thus a subset
of FB(M ,N ) and we make CB(M ,N ) into a metric space by equipping it with the
inherited metric.

Lemma 3.13. The set CB(M ,N ) is a closed subspace of FB(M ,N ).

Proof. Let CB(M ,N ) 3 fk → f ∈ FB(M ,N ).
The fact that f is continuous follows from the inequality

dN (f (x), f (y)) ≤ dN (f (x), fk(x)) + dN (fk(x), fk(y)) + dN (fk(y), f (y)),

since given ε > 0, by taking k large enough, we conclude that

dN (f (x), f (y)) ≤ ε
3

+ dN (fk(x), fk(y)) +
ε

3
.

The continuity of f now follows from the continuity of fk.
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Continuity is a purely local property of a function. We now define a concept that
also has a global ingredient in it.

Definition 3.19. Let (M , dM ) and (N , dN ) be two metric spaces. A function f :
M → N is uniformly continuous iff for any ε > 0 there exists a δ > 0 such that

f (Bδ(a)) ⊂ Bε(f (a)), for all a ∈ M .

Example 3.4. Let the set of real numbers R be equipped with the usual metric coming
from the absolute value function. The function

f : R 3 x 7→ x2 ∈ R,

is continuous but not uniformly continuous.
Continuity at a point a ∈ R follows since given ε > 0∣∣x2 − a2

∣∣ = |x − a| |x + a| < ε if |x − a| < (
√

a2 + ε− |a|).

That the function is not uniformly continuous follows since

|f (n + 1/n)− f (n)| = 2 + 1/n2 ≥ 2,

while (n + 1
n )− n→ 0 as n→∞.

Example 3.5. The function

f : (0, 1) 3 x 7→ 1/x ∈ (0,∞),

is continuous but not uniformly continuous with the usual metric on these two subsets
of the real numbers.

Continuity at a point a ∈ (0, 1) follows since given ε > 0∣∣∣∣1x − 1
a

∣∣∣∣ = |x − a| 1
xa
< ε if |x − a| < εa2

1 + εa
,

for x ∈ (0, 1).
That the function is not uniformly continuous follows since

|f (2/n)− f (1/n)| = n/2,

while |2/n− 1/n| → 0 as n→∞.

Exercise 3.23. Let M and N be metric spaces. Show that if f : M → N is uniformly
continuous, then it maps Cauchy sequences to Cauchy sequences.

Definition 3.20. Let (M , dM ) and (N , dN ) be two metric spaces. A function f :
M → N is Lipschitz continuous, with Lipschitz constant θ, iff there exists a constant
θ > 0 such that

dN (f (x), f (a)) ≤ θ dM (x, a), x, a ∈ M .
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Exercise 3.24. Show that a Lipschitz continuous function f : M → N is uniformly
continuous.

Exercise 3.25. Let (M , dM ) be a metric space. Show that the function x → dM (x, y)
is a Lipschitz continuous function for any y ∈ M .

Definition 3.21. Let (M , dM ) be a metric space. A Lipschitz continuous function
T : (M , dM ) → (M , dM ) with Lipschitz constant θ ≤ 1 is called a contraction. If
θ < 1 it is called a strict contraction.

We now present our first fixed point theorem, the following important Banach
fix point theorem.

Theorem 3.14. Let (M , dM ) be a complete metric space and let T : M → M be a strict
contraction with Lipschitz constant θ < 1. Then there exists a unique point a ∈ M such
that T (a) = a. Furthermore, if

xn+1 := T (xn), n ∈ N,

then xn → a as n→∞ for any given starting point x0. We also have that

dM (xn, a) ≤ θn(1− θ)−1dM (x1, x0), n ∈ N. (3.1)

Proof. To find a solution take any point x0 ∈ M and define recursively the sequence
xn+1 := T (xn) for n ∈ N. We intend show that this sequence converges to a fix point.

Firstly, note that

dM (xn+1, xn) = dM (T (xn),T (xn−1)) ≤ θ dM (xn, xn−1)

using the definition of the sequence and that T is a strict contraction. Repeating this
argument gives

dM (xn+1, xn) ≤ θndM (x1, x0).

To estimate dM (xm, xn) assume that m ≥ n. and write m = n + k with some k ∈ N.
Using the triangle inequality repeatedly gives

dM (xm, xn) = dM (xn+k, xn)

≤ dM (xn+k, xn+k−1) + · · ·+ dM (xn+2, xn+1) + dM (xn+1, xn)

≤
(
θn+k−1 + · · ·+ θn+1 + θn)dM (x1, x0).

Using the formula for a geometric sum the right hand side can be written as

θn 1− θk

1− θ
dM (x1, x0) < θn 1

1− θ
dM (x1, x0)

since 0 < θ < 1. Altogether,

dM (xm, xn) ≤ θn(1− θ)−1dM (x1, x0). (3.2)
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This shows that dM (xm, xn) → 0 as m, n → ∞ and hence that xn is a Cauchy se-
quence.

Since M is complete, the sequence is convergent, i.e., it exists an a ∈ M such that
xn → a as n → ∞. Using that T is sequentially continuous (Lipschitz continuous)
it follows that xn+1 = T (xn) → T (a) as n → ∞. Recalling that the limit point to a
convergent sequence is unique it follows that T (a) = a, that is, a is a fixed point.

Uniqueness of the fixed point follows since if a and b are both fixed points of T ,
then

dM (a, b) = dM (T (a),T (b)) ≤ θ dM (a, b).

Since 0 < θ < 1, this implies that dM (a, b) = 0 and thus a = b.
Finally, using the inequality (3.2) and that x → dM (x, xn) is continuous, letting

m→∞ gives us (3.1).

Lemma 3.15. Let M be a metric space, let N be a complete metric space and let A be
a dense subset of M. Regard A as a subspace in M. A uniformly continuous function
f : A → N can then be uniquely extended to a continuous function F : M → N . This
means that there exists a continuous function F : M → N such that

F (x) = f (x), x ∈ A,

and that if F ,G : M → N are continuous functions that agree on A, then they agree on
M.

Proof. Since A is dense in M , given m ∈ M , we can find a sequence A 3 ak → m ∈
M as k → ∞. Clearly {ak}∞k=1 is a Cauchy sequence in A. Since f is uniformly
continuous {f (ak)}∞k=1 is a Cauchy sequence in N . Since N is complete, there exists a
point n ∈ N such that f (ak)→ n as k →∞. By mixing sequences we conclude that
the limit n ∈ N is independent of sequence {ak}∞k=1 in A converging to m ∈ M . This
implies that we can, and must, define the function F : M → N , by setting F (m) = n.
Uniqueness of a possible continuous extension F follows directly from this.

With the above definition it is clear that F = f on A. To show that F as defined
above is continuous, we take a sequence N 3 k 7→ mk ∈ M converging to a point
m∞ ∈ M . We must prove that F (mk)→ F (m∞) as k →∞.

Take ε > 0 and then sequences A 3 akj → mk as j →∞, including k =∞. Since
f is uniformly continuous on A, we can find a δ > 0 such that dN (f (a), f (b)) < ε

3 if
dM (a, b) < δ, a, b ∈ A. Now

dN (F (mk), F (m∞)) ≤
dN (F (mk), f (akj )) + dN (f (akj ), f (a∞j )) + dN (f (a∞j ), F (m∞)).

If k is large enough then dM (mk,m∞) < δ

3 . For this k, by taking j large enough in
the inequality above, we conclude that

dN (F (mk), F (m∞)) < ε,
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which concludes the proof.

We shall now single out functions that preserve metric structure.

Definition 3.22. Let (M , dM ) and (N , dN ) be two metric spaces. We say that a
function f : M → N is a partial isometry iff

dM (x, y) = dN (f (x), f (y)), x, y ∈ M .

We say that f : M → N is an isometry iff it is a surjective partial isometry.

Note that a partial isometry always is injective and that an isometry thus is bijective
and has an inverse.

Exercise 3.26. Show that the inverse of an isometry is an isometry.

Exercise 3.27. Show that the composition of two isometries (when defined) is again
an isometry.

Definition 3.23. We say that two metric spaces M and N are isometric iff there exists
an isometry f : M → N .

Using Lemma 3.15, we can now show the following result.

Proposition 3.16. The completion of a metric space is, up to an isometry, unique.

Proof. Let M be a given metric space and let M1 and M2 be two complete metric
spaces with partial isometries Ii : M → Mi, such that Ii(M ) is dense in Mi, for
i = 1, 2. Then Ii : M → Ii(M ) ⊂ Mi are isometries, for i = 1, 2. These isometries
have inverses, which we by a slight abuse of notation denote by I−1

i , and in fact
I2 ◦ I−1

1 : I1(M )→ M2 is a partial isometry with dense image. From the lemma above
we conclude that it has a unique extension to an isometry (check this!) from M1 to
M2.

Compactness

We now introduce a concept that is important when trying to make “local arguments
global”.

Definition 3.24. Let M be a metric space and C ⊂ M a given subset. We say that a
family of subsets {Uα}α∈I of M , is a covering of C iff C ⊂ ∪α∈I Uα. If all the subsets
Uα are open we say that it is an open covering of C .

Definition 3.25. Let M be a metric space. A subset C ⊂ M is compact iff every
open covering of C has a finite subcovering, i.e. if we from every open covering of C ,
can select a finite number of subsets that still covers C .
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In Rn, you might have seen a definition of compact set, as being a set that is closed
and bounded. The definition of a compact set given above actually is compatible with
the condition of being closed and bounded in Rn, but the condition of being closed
and bounded in a general metric space is not the same as our definition of compact.
The definition of a compact set that we have given above turns out to be “the right”
generalization of the concept of being closed and bounded in Rn. We shall now try to
clarify these comments. We first show that in general a compact set is bounded and
closed.

Lemma 3.17. A compact set in a metric space is bounded.

Proof. Let C be a compact set, and for every point a ∈ C look at the open ball
B1(a) with radius 1 and center in a. Then {B1(a)}a∈C is an open covering of C .
Since C is compact, we can select a finite number, say n, of subsets that still covers
C . Let d denote the maximal distance between the different center points, i.e. d =

sup{dM (ai, aj) ; i, j = 1, 2, 3, . . . , n}. From the triangle inequality it follows that
diam(C ) ≤ 2 + d .

Lemma 3.18. A compact set in a metric space is closed.

Proof. Let C be a compact set. We shall show that the complement of C is open. Fix
a point a /∈ C . Then for any point c ∈ C , we can find two (nonempty) disjoint open
balls Brc (c) and Brc (a) (by chosing the radius rc (depending on c) small enough). The
balls {Brc (c)}c∈C is an open covering of C . Since C is compact we can select a finite
subcovering, say {Brj (cj)}n

j=1. Then ∩n
j=1Brj (a) is an open neighborhood of a disjoint

from C , i.e. the complement of C is open.

Lemma 3.19. A closed subset of a compact set, in a metric space M, is compact.

Proof. Let C denote a compact set in M , and let F be a closed set F ⊂ C .
If {Uα}α∈I is an open covering of F , then {{Uα}α∈I , F c} is an open covering of

C . Since C is assumed to be compact, we can extract a finite subcovering of C . We
may assume that it has the form {{Uα}α∈J , F c}, for some finite index set J ⊂ I . We
conclude that in fact {Uα}α∈J is an open covering of F .

We shall now show that our definition of a compact set is “the right one”, in terms
of the fact that we get “the right theorems”.

We begin by proving that continuous images of compact sets are compact.

Lemma 3.20. Let M and N be metric spaces and let f : M → N be a continuous
function. If C ⊂ M is compact, then f (C ) ⊂ N is compact.

Proof. Let {Vα}α∈I be an open covering of f (C ). Then {f −1(Vα)}α∈I is an open
covering of C . This follows since f is continuous, the inverse image of a union is the
union of the inverse images, and the fact that C ⊂ f −1(f (C )) always holds.
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Since C is compact we can extract a finite subcovering, {f −1(Vα)}α∈J , of C and
we conclude that {Vα}α∈J covers f (C ).

The following concept is sometimes very useful.

Definition 3.26. A family of subsets {Fα}α∈I , of some universal set, has the finite
intersection property iff for every nonempty finite subindexset J ⊂ I it is true that
∩α∈J Fα 6= ∅.

Exercise 3.28. Show that a metric space is compact iff every family of closed subsets
that has the finite intersection property has a nonempty intersection.

Definition 3.27. A metric space M is called sequentially compact iff every sequence
{xk}∞k=1 in M has a convergent subsequence.

Lemma 3.21. If a metric space is compact, then it is sequentially compact.

Proof. Let N 3 k 7→ xk ∈ M be a sequence in M and assume that it has no convergent
subsequence. Given any x ∈ M , we can then find an open ball around x containing
at most a finite number of points from the sequence. (Note that this can possibly be
a single point repeated a finite number of times.) Since M is compact, we can find a
finite collection of such balls covering all of M . This is a contradiction.

Lemma 3.22. Let M be a sequentially compact metric space and let {Uα}α∈I be an open
covering. Then there exists an ε > 0 such that every open ball in M with radius less than
ε is contained in (at least) one subset Uα0 from the covering.

Proof. Let {Uα}α∈I be an open covering and assume that we can find balls B1/k(ak)
in M that are not contained in any subset from the covering. Since M is sequentially
compact, from the sequence of center points, we can find a convergent subsequence
akj → a∞. Since {Uα}α∈I is a covering, a∞ must belong to at least one Uα0 from the
covering. Since Uα0 is open, there exists a δ > 0 such that Bδ(a∞) ⊂ Uα0 . Now take
kj so large that 1

kj
< δ

3 and such that dM (a∞, akj ) <
δ

3 . From the triangle inequality
we then have that B1/kj (akj ) ⊂ Bδ(a∞) ⊂ Uα0 , which is a contradiction.

We are now ready to prove that sequential compactness is equivalent to compact-
ness. The direction that remains to prove is the following.

Lemma 3.23. If a metric space is sequentially compact then it is compact.

Proof. Let {Uα}α∈I be an open covering and take ε > 0 so small that any ball of radius
(less than or equal to) ε is contained in a member of the covering. Choose Bε(a1) for
some a1 ∈ M . If Bε(a1) covers M we are ready (since Bε(a1) actually is contained
in one member from the covering which therefore covers M ), otherwise choose a2 /∈
Bε(a1) . If ∪2

i=1Bε(ai) covers M we are ready, otherwise we pick a3 /∈ ∪2
i=1Bε(ai) and

so on. . .
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This procedure will terminate in a finite number of steps, since otherwise we could
find an infinite sequence of points {ak}∞k=1 with d (ak, aj) ≥ ε if k 6= j, which would
contradict sequential compactness.

The conclusion is that finally a finite number of balls will cover M . Since each ball
is contained in some member from the original covering, we conclude that we have
constructed a finite subcovering.

We thus conclude:

Corollary 3.24. Let M be a metric space. Then M is compact iff M is sequentially
compact.

The following result is known as the Heine-Borel lemma.

Lemma 3.25. Consider the metric space Rn with the product metric

|x− y| = sup(|x1 − y1| , |x2 − y2| , . . . , |xn − yn|), x, y ∈ Rn.

A subset C ⊂ Rn is compact iff it is closed and bounded.

Remark. As you notice, the metric in the statement above is not the usual euclidean
metric on Rn, hopefully well known from basic mathematics courses, but if you are
familiar with the usual euclidean metric you should have no difficulty to see that the
proof below goes through unchanged also for the euclidean metric. Otherwise we shall
later see that the metric above generates exactly the same closed, open and compact
sets as the euclidean one.

Proof. We already know that in any metric space, a compact set is closed and bounded,
so we only have to prove that a closed and bounded subset C of Rn is compact.

Since a closed subset of a compact set is compact, we may assume that the closed
and bounded set C actually is a cube, say C = [−N ,N ]× [−N ,N ]×· · ·× [−N ,N ]
for some N ∈ N. Now pick a sequence {xk}∞k=1 in C and let πm denote the nat-
ural projection in Rn onto the mth coordinate axis. Then {πm(xk)}∞k=1 is for every
m ∈ {1, 2, . . . , n} a sequence in [−N ,N ]. It is enough to show that every one of
these sequences in [−N ,N ] has a convergent subsequence, since this makes it pos-
sible to select one subsequence {xkj}∞k=1 such that {πm(xkj )}∞k=1 converges for every
m ∈ {1, 2, . . . , n}, i.e. the subsequence {xkj}∞k=1 converges in Rn.

That a sequence in [−N ,N ] has a convergent subsequence follows since we, by re-
peatedly splitting the interval in halves and selecting a nested sequence of subintervals
(with diameter N

2k−1 for k = 0, 1, 2, 3, . . .) containing infinitely many members from
the original sequence, can create a Cauchy subsequence (try to write out all the details
using a Cantor diagonalization scheme). Since R is complete a Cauchy (sub)sequence
converges.

We have proved that C is sequentially compact and thus compact.
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A continuous function on a compact metric space is uniformly continuous.

Lemma 3.26. Let M and N be metric spaces and let f : M → N be a continuous
function. If M is compact, then f is uniformly continuous.

Proof. Assume that f is not uniformly continuous. Then there exists an ε > 0 and
sequences {xk}∞k=1 and {yk}∞k=1 in M such that

dN (f (xk), f (yk)) ≥ ε, k ∈ N,

while
dM (xk, yk) ≤ 2−k, k ∈ N.

Since M is compact we can extract a convergent subsequence {xkj}∞j=1, and then by
possibly further refinement of the index set, we may assume that the corresponding
subsequence {ykj}∞j=1 also converges (to the same limit point). Since f is continuous,
going to the limit for these subsequences in the equations above gives a contradiction.

Lemma 3.27. If M is a compact metric space, then M is complete.

Proof. Let {xk}∞k=1 be a Cauchy sequence in M . Since M is compact, we can extract a
subsequence {xkj}∞j=1 converging to some point x∞ ∈ M . Since the original sequence
was a Cauchy sequence, we conclude that the whole original sequence converges to
x∞.

Definition 3.28. Let M be a metric space. A function f : M → (−∞,+∞] is lower
semicontinuous iff for every α ∈ R the set

{m ∈ M ; f (m) > α}

is open.

Remark. Note that we let the functions possibly take the value +∞.

This is partly in order to be able to prove things like:

Exercise 3.29. Show that if {fi}i∈I is a family of lower semicontinuous functions on
a metric space M , then F (·) := supi∈I fi(·) is lower semicontinuous.

We shall end this section with a brief discussion about variational problems in
metric spaces.

You might be familiar with the classical result that a real-valued continuous func-
tion on a compact set attains its infimum and supremum over the set.

We shall here generalize this result.

61



Theorem 3.28. Let f : M → (−∞,+∞] be a lower semicontinuous function on a
compact metric space M. Then there exists an m0 ∈ M such that

f (m0) ≤ f (m) for all m ∈ M .

In other words, the minimum problem for f over M has a solution.

Proof. We may assume that f is not identically equal to +∞. Now take a sequence
{αk}k∈N decreasing towards α0 := infm∈M f (m). (Of course at this point we do not
know if α0 = −∞.) By definition of the sequence {αk}k∈N and since f is lower
semi-continuous the sets

Kn := {m ∈ M ; f (m) ≤ αk}

are nonempty and closed. Since M is a compact metric space we conclude that they are
also compact. Now the family {Kn}n∈N clearly has the finite intersection property, and
thus again since M is compact we conclude that the intersection ∩n∈NKn is nonempty.
Clearly any element m0 ∈ ∩n∈NKn solves the problem.

The result above is crucial on many occasions when we try to construct existence
proofs. As an example of its usefulness, we shall now give d’Alembert’s proof of the
fundamental theorem of algebra.

Theorem 3.29. Given n ∈ N and a0, a1, . . . an ∈ C with an 6= 0 , there exists a z ∈ C
such that

anzn + an−1zn−1 + · · ·+ a1z + a0 = 0.

Proof. The proof uses two fundamental facts, apart from basic algebra in C. The first
fact is that a real-valued continuous function on a compact set attains its infimum
over the set. The second fact is that, given a ∈ C and k ∈ N, we can always solve the
equation

zk = a.

(If this fact is new to you try to prove it.)
Now let p(z) := anzn +an−1zn−1 + · · ·+a1z +a0, where we recall that we assume

that an 6= 0, and look at

P : C 3 z 7→ |p(z)| ∈ [0,∞).

The function P is continuous with the usual topologies on C = R × R and [0,∞).
Since P is continuous and any closed ball BR(0) is compact we know that the infimum
of P over BR(0) is attained. Since

P(z) ≥ |an| |z|n − (|an−1| |z|n−1 + · · ·+ |a1| |z|+ |a0|),
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we conclude that if we take R big enough the minimum of P over the ball BR(0) will
be attained in the interior of BR(0).

Assume that the infimum is attained in the point z0 ∈ BR(0). From the binomial
expansion we see that there exists polynomials b1, . . . , bn such that

p(z0 + h) = p(z0) + b1(z0)h + . . .+ bn(z0)hn.

Since p(z) is not constant, there is a first nonzero term bj(z0) for some j. Then, for

any λ ∈ (0,∞), let hj = −λj p(z0)
bj(z0) (note that there are j different solutions to this

equation). Choosing h in such a way we get that

P(z0 + h) = P(z0)(1− λj) + O(λj+1),

where O(·) stands for big ordo. If P(z0) 6= 0 we can, by choosing λ small enough,
make P(z0 + h) smaller than P(z0). Thus if P(z0) 6= 0 we can in every neighborhood
of z0 find a point where P(z) has a smaller value. This is a contradiction to the fact that
P(z0) is the minimum value attained in the interior of BR(0) and thus we conclude
that P(z0) = 0.

3.2 Topological spaces

One general philosophy is that when we study metric spaces, we study structures pre-
served under isometries. Sometimes we are interested in more general structures, for
instance structures preserved under bicontinuous mappings called homeomorphisms.
A homeomorphism is by definition a continuous bijection with a continuous inverse.

Exercise 3.30. Show that a continuous bijection not necessarily has a continuous
inverse. Give examples.

We already know (don’t we?) that homeomorphisms between metric spaces pre-
serve for instance open, closed and compact sets. To study homeomorphisms we shall
generalize the concept of metric space and only focus on properties of the family of
open sets, but before we give the definition, we shall motivate by a simple example.

We shall study the space of bounded continuous real valued functions on the unit
interval I = [−1, 1], i.e. CB(I ,R). We say that fn → f as n → ∞ pointwise iff
fn(x) → f (x) in R as n → ∞ for any fixed x ∈ I . We shall show that this notion of
convergence can not come from a metric on CB(I ,R), but from some more general
notion of measuring how close two points in a set are from each other. The notion is
that of a topology.

Definition 3.29. Let M be a set and let T be a family of subsets in M such that

1. ∅ and M both belong to T .
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2. Arbitrary unions of sets in T belong to T , i.e. ∪α∈AUα ∈ T if Uα ∈ T for all
α ∈ A.

3. Finite intersections of sets in T belong to T , i.e. ∩N
i=1Ui ∈ T if Ui ∈ T for

i = 1, 2, . . . ,N .

Then the family T is called a topology on M and the members of T are called
open sets. We call the pair (M , T ) a topological space.

When there is no risk of confusion, we will say that M is a topological space,
suppressing the actual topology T .

Exercise 3.31. Given a set M , show that the family of subsets {∅,M} constitute a
topology for M . This topology is called the trivial topology for M .

Exercise 3.32. Given a set M , show that the family of all subsets of M constitute a
topology for M . This topology is called the discrete topology for M .

Theorem 3.3 tells us that the open sets (see Definition 3.4) of a metric space
(M , dM ) form a topology on M . We say that this is the topology generated (or
given) by the metric.

Exercise 3.33. Let M be a given non empty set. Show that there exists a metric on
M that generates the discrete topology on M .

Given a topological space (M , T ), there is not always a metric that generates the
topology.

Exercise 3.34. Show that the trivial topology for a nonempty set M comes from a
metric iff the set M contains exactly one point.

A fixed given set M can of course be given many different topologies. There are
some extreme topologies, like the trivial or the discrete topology. If T1 and T2 are two
topologies on a given set M , we say that T1 is poorer than T2 iff T1 ⊂ T2. The term
richer is also used in the obvious way.

Exercise 3.35. Show that if Tα, α ∈ A are topologies on a set M , then the intersection
∩α∈ATα also is a topology on M .

Exercise 3.36. Given a set M and any family S of subsets of M , we can construct the
smallest topology T on M that contains S by letting T consist of arbitrary unions of
finite intersections from S. Show that this indeed gives a topology. We say that this is
the topology generated by S.

Let M be a topological space, let m ∈ M and let U be an open set containing
m. Then we say that U is an definopen neighborhood of m. We say that a sequence
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{mk}∞k=1, in a topological space M , converges to a point m ∈ M , iff for any open
neighborhood U of m, there exists an N such that mk ∈ U if k ≥ N .

We noted above that not all topologies are generated by metrics. We shall now
give the example of a non-metrizable topological space that we promised to give. We
return to the space of bounded continuous real valued functions on the unit interval
I = [−1, 1], i.e. CB(I ,R).

For each given f ∈ CB(I ,R), ε > 0 and x ∈ I , we define

Nε,x(f ) := {g ∈ CB(I ,R) ; |g(x)− f (x)| < ε} .

We see the set Nε,x(f ) for a given ε > 0 and x ∈ I as a neighborhood of f in CB(I ,R).
In fact fn → f as n→∞ pointwise iff for any given ε > 0 and x ∈ I , fn ∈ Nε,x(f ) if
n is large enough.

We now equip the set CB(I ,R) with the topology T generated by the sets

{Nε,x(f )}{f ∈ CB(I ,R), x ∈ I , ε > 0}.

Since any open set U in T is a union of a finite intersection of the generating sets, this
means that fn → f as n→∞ pointwise iff for any given U ∈ T , fn ∈ U if n is large
enough.

Exercise 3.37. Show that if the topology T came from a metric, we would be able
to find a countable subfamily N = {Ni}∞i=1 of neighbourhods around, say, the
function 0(·) = 0, such that every Ni ∈ N is a finite intersection of “basic sets”
Ni = ∩ni

ki=1Nεki ,xki
(0) and such that for any open set U ∈ T containing the function

0 there exists an Ni0 ∈ N such that Ni0 ⊂ U .

This exercise shows that the topology above can not come from a metric, since we
can create a sequence converging to zero pointwise at all the points xki with indices
ki = 1, 2, . . . , ni, i = 1, 2, 3, . . ., but not at all points in I .

We can extend the notion of e.g. continuity from metric spaces to topological
spaces in the following way.

Definition 3.30. Let (M , TM ) and (N , TN ) be topological spaces. Then a function
f : M → N is continuous iff f −1(U ) ∈ TM if U ∈ TN , i.e. iff inverse images of
open sets are open.

As before we define closed sets as complements of open sets, and we also repeat
the definition of compact set, word by word.

Many of the results that are valid for metric spaces are also valid in the more
general context of topological spaces. It is for instance true that continuous images of
compact sets are compact. There are exceptions though. It is for instance not true in
general that sequentially compact implies compact for general topological spaces, and
a compact set in a topological space does not need to be closed.

65



Definition 3.31. A topological space M is Hausdorff iff given m, n ∈ M with m 6= n
there exist disjoint open sets U ,V such that m ∈ U and n ∈ V .

Exercise 3.38. Show that a metric space always is Hausdorff.

Exercise 3.39. Give an example of a topological space that is not Hausdorff.

Exercise 3.40. Show that a compact set is closed in a Hausdorff topological space..

Exercise 3.41. Show that a topological space is compact iff every family of closed
subsets that has the finite intersection property has a nonempty intersection.

3.3 Variational problems.

When we deal with analysis in infinite dimensional spaces many of the natural topolo-
gies will be non-metrizable, i.e. they do not spring from a metric. In many cases we
can still do analysis and in this section we give a complete description (in terms of
topology) of when we can solve a variational problem.

Let E be a given non-empty set and let I : E → (−∞,+∞] be a given function,
not identically equal to +∞.

Problem 3.1. Does there exist a u0 ∈ E such that

I (u0) ≤ I (u), u ∈ E?

We equip the set (−∞,∞] with the topology S generated by the family of sets
{(α,∞]}α∈R. In fact, this family is stable under finite intersections and arbitrary
unions, so all open sets in S are of the form (α,∞] (or ∅ or (−∞,∞]).

Exercise 3.42. Show that if a subset K ⊂ (−∞,∞] is compact in the topology S,
then inf{k ; k ∈ K } ∈ K .

Note that if we can find a topology T on E such that I : (E , T )→ ((−∞,∞],S)
is continuous and E is compact, the image set I (E) is compact in (−∞,∞] and thus
the infimum of I over E is attained.

In fact we have the following result:

Theorem 3.30. That Problem 3.1 has a solution is equivalent to that there exists a topol-
ogy T on E such that

1. For all α ∈ R, the sublevel-sets

Eα := {u ∈ E ; I (u) ≤ α}

are closed.

2. There exists an α0 ∈ R such that Eα0 is non-empty and compact.
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Remark. Condition (1) above says precisely that the real-valued function I : (E , T )→
((−∞,∞],S) is continuous, and condition (2) says that we can restrict our attention
to a compact subset of the original set E .

Note also that we do not demand that the topology above should be Hausdorff,
and so compact sets are not necessarily closed.

Proof. (⇒) The sets ∅ and (α,∞], for α ≥ −∞ constitute a topology on (−∞,∞].
We now give E the induced topology. This is the poorest topology on E such that I is
continuous and (apart from the empty set) it consists of the sets

Uα := {u ∈ E ; I (u) > α} , α ∈ R.

This means that condition 1 above is satisfied. Now let u0 be a solution to Problem 3.1
and set α0 = I (u0) (thus α0 < ∞) . For any open covering ∪α∈AUα of Eα0 we must
have at least one α1 ∈ A with α1 < α0 and so we can cover Eα0 with this Uα1 alone.
Thus Eα0 is compact.

(⇐) This follows from the discussion and exercise above, but let us give an equiv-
alent and direct proof.

Take a non-empty and compact Eα0 . Then for all α ≤ α0 the sets Eα are the inter-
section of a closed and a compact set and are thus compact. Now let m = infu∈E I (u)
and pick a decreasing sequence {αi}∞1 tending to m with αi ≤ α0 and such that Eαi are
all non-empty. Since the family of closed and compact sets {Eαi}

∞
1 has the finite inter-

section property their intersection is non-empty as well. Any point in this intersection
is a solution to Problem 3.1 (note that this also shows that m > −∞).
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Chapter 4

Groups

Definition 4.1. A group is a non empty set G together with an operation (a function)
m : G × G → G, which we will usually simply write as m(g1, g2) = g1g2, such that

1. For any g1, g2, g3 ∈ G we have that g1(g2g3) = (g1g2)g3.

2. There exists an element (a left identity) e ∈ G such that eg = g, g ∈ G.

3. For every given g ∈ G there exists an element (a left inverse) g ′ ∈ G such that
g ′g = e.

A group is thus a set G together with an operation, usually called (group) multi-
plication. We warn the reader that there can be many ways to define a group multipli-
cation on a given set. We shall never the less usually talk about the group G, without
explicitly mentioning the group operation. It is only when there really are different
group structures present on a given set that it is essential to explicitly mention them.

Lemma 4.1. A left inverse is also a right inverse, i.e. if for a given g ∈ G we have that
g ′g = e then gg ′ = e.

Proof. Given g, g ′ ∈ G such that g ′g = e, we know that we can find an element
g ′′ ∈ G such that g ′′g ′ = e. Then

gg ′ = (eg)g ′ = ((g ′′g ′)g)g ′ = (g ′′(g ′g))g ′ = (g ′′e)g ′ = g ′′(eg ′) = g ′′g ′ = e.

Since a left inverse is also a right inverse, we will simply call it an inverse.

Lemma 4.2. A left identity is also a right identity.

Proof. For any given g ∈ G, we can find an inverse g ′. Thus

ge = g(g ′g) = (gg ′)g = eg = g.

Since a left identity is also a right identity, we will simply call such an element an
identity.
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Exercise 4.1. Show that an identity is unique, i.e. if e, f ∈ G are both identities, then
e = f .

Exercise 4.2. Show that an inverse of a given element g ∈ G is unique.

Thus we can (and will) speak about the identity of a group and the inverse of a
given element in a group. The inverse of an element g ∈ G will usually be denoted by
g−1.

Example 4.1. The set of integers Z is a group with the operation of addition (+).
This is also true for the set of rational numbers or the set of real numbers with the
operation of addition.

The sets of non zero rational numbers or real numbers are also groups with the
operation of ordinary multiplication.

In the examples given above it is always true that g1g2 = g2g1. This is not always
the case though.

Definition 4.2. If the operation m : G×G → G is symmetric, i.e. if g1g2 = g2g1 for
all g1, g2 ∈ G we say that the group G is abelian or commutative.

We give the following example of a non commutative group.

Example 4.2. For a fixed n ∈ N, let GL(n,R) be the set of non singular n×n matrices.
This is a group with matrix multiplication. It is not commutative if n > 1.

An element A ∈ GL(n,R) corresponds to a linear bijection from Rn into itself.
We generalize the example given above.

Let X be a given non empty set. We define SX to be the set of all bijective functions
from X to X . This is a group under ordinary composition of functions. The group SX

is called the permutation group of X .

Exercise 4.3. Show that if X = {1, 2, 3, . . . , n} for some given n ∈ N, then |SX | =
n!, where |SX | denotes the number of elements in SX .

If the set X happens to have some kind of “structure”, we can look at the subset
of functions in SX such that both the function and its inverse preserves that structure.
This subset will then also be a group under composition. As an example of this situ-
ation, let M be a metric space and look at the set of isometries on M , Iso(M ). The
set of isometries on M is a subset of the set of all permutations on M (SM ). In fact, it
is precisely the subset of SM that preserves the metric structure on the set M . The set
Iso(M ) is a group under composition. It is called the symmetry group of the metric
space M .

The groups discussed above give examples of the following. Given a group G, we
can often find subsets H ⊂ G t hat are groups in their own right with the operation
inherited from G.
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Definition 4.3. Let G be a group. A non empty subset H of G is called a subgroup
of G iff

1. The product g1g2 ∈ H for all g1, g2 ∈ H .

2. The inverse g−1 ∈ H for all g ∈ H .

First of all it is important to notice that a subgroup as defined above really is a
group.

Exercise 4.4. Show that a subgroup is a group.

When we study functions from one group to another, it is important to single out
the ones that preserve the group structure.

Definition 4.4. Let G and H be two groups. A function f : G → H is called a
(group) homomorphism iff

f (g1g2) = f (g1)f (g2), g1, g2 ∈ G.

Note that in the equation above, the multiplication on the left is multiplication in the
group G, while the multiplication on the right is multiplication in the group H .

Lemma 4.3. If f : G → H is a group homomorphism, then f (eG) = eH , where eG and
eH denote the identities in G and H respectively.

Proof. We notice that f (eG) = f (eGeG) = f (eG)f (eG), and thus

eH = f (eG)−1f (eG) = f (eG)−1f (eGeG) = f (eG)−1(f (eG)f (eG))

= (f (eG)−1f (eG))f (eG) = eH f (eG) = f (eG).

Lemma 4.4. If f : G → H is a group homomorphism, then for any given g ∈ G, we
have that f (g−1) = f (g)−1.

Proof. Given g ∈ G, we have that eH = f (eG) = f (g−1g) = f (g−1)f (g). From
the fact that a left inverse is a right inverse and from the uniqueness of inverses we
conclude that f (g−1) = f (g)−1.

Definition 4.5. A bijective (group) homomorphism is called a (group) isomorphism.
If there exists a group isomorphism between two given groups, we say that they

are isomorphic.

Isomorphic groups can not be told apart from the point of view of simple set and
group structure.

If we happen to know everything about permutation groups, the following result
by Cayley shows that we actually know everything about groups in general.
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Theorem 4.5. Every group is isomorphic to a subgroup of its permutation group SG .

Proof. We leave most of the proof as a number of exercises to the reader.
For each element g ∈ G, we can define a bijection πg : G → G by πg (h) := gh,

h ∈ G.

Exercise 4.5. Show that πg as defined above actually is a bijection.

We can thus define a function Ψ : G → SG by Ψ(g) := πg .

Exercise 4.6. Show that the image of Ψ , Im(Ψ) := {Ψ(g) ∈ SG ; g ∈ G}, is a
subgroup of SG .

The following result concludes the proof

Exercise 4.7. Show that Ψ : G → Im(Ψ) is a group isomorphism.

If G and H are two given groups, and if f : G → H is a homomorphism, it is
natural to, apart from the image of f which is a subset of H , single out the following
subset of G.

Definition 4.6. The kernel of f (ker(f )) is the following subset of G

ker(f ) := {g ∈ G ; f (g) = eH} .

Proposition 4.6. The set ker(f ) is a subgroup of G.

Proof. To begin with, we notice that ker(f ) is non empty, since eG ∈ ker(f ).
If g1, g2 ∈ ker(f ), then f (g1g2) = f (g1)f (g2) = eH eH = eH , and thus g1g2 ∈

ker(f ).
Furthermore if g ∈ ker(f ), then f (g−1) = f (g−1)eH = f (g−1)f (g) = f (g−1g)) =

f (eG) = eH , and thus f (g−1) ∈ ker(f ).

Exercise 4.8. Show that a group homomorphism, f : G → H , is injective iff ker(f ) =

{eG}.

Also the image is a group.

Proposition 4.7. The set Im(f ) is a subgroup of H.

Proof. To begin with Im(f ) is non empty since G is non empty.
If h1, h2 ∈ Im(f ), there exist elements g1, g2 ∈ G such that f (gi) = hi, i = 1, 2.

Thus h1h2 = f (g1)f (g2) = f (g1g2), and we conclude that h1h2 ∈ Im(f ).
Given h ∈ H , take g ∈ G such that f (g) = h. Then f (g−1) = f (g)−1 = h−1 and

we conclude that h−1 ∈ Im(f ).
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The first groups that were studied were permutation groups and symmetry groups
for geometrical objects. To define the latter we shall briefly discuss actions of groups
on sets.

Definition 4.7. Let G be a group and X a non empty set. We say that G acts on
X iff there exists a function m : G × X → X , which we often will write simply as
m(g, x) =: g(x), such that

1. g1(g2(x)) = (g1g2)(x), g1, g2 ∈ G, x ∈ X .

2. e(x) = x, x ∈ X .

The mapping m is called the action of G on X .

We have already seen examples of this. When we proved Cayley’s theorem, we
used the following action of a given group G on itself

m : G × G 3 (g, x) 7→ gx ∈ G.

The conditions for this to be a group action follows immediately from the group
structure of G.

This is slightly more than an example. In fact if a group G acts on a set X , then
we can always in a natural way define a homomorphism from G to a subgroup of SX .
Define the mapping Ψ : g 3 G 7→ Ψg ∈ SX , by Ψg (·) = g(·). Then Ψ is a group
homomorphism. This group homomorphism does not have to be an isomorphism
from G to Im(Ψ) though. In fact it is an isomorphism iff e ∈ G is the only element
in G that leaves every element of X fixed, i.e. if g(x) = x for all x ∈ X , implies that
g = e.

Definition 4.8. Let H be a subgroup of a group G. Given g ∈ G the set

gH := {gh ; h ∈ H}

is called the left coset of H determined by g. A subset C in G is called a left coset of
H in G, iff there exists a g ∈ G such that C = gH . We denote the set of left cosets of
H in G by G/H .

Given a group G and a subgroup H of G, we consider the following relation on
G. We say that g1 ∼ g2 iff g−1

1 g2 ∈ H .

Exercise 4.9. Show that this is an equivalence relation on G and that the set of equiv-
alence classes is precisely the set of left cosets G/H .

In particular we note that the set of left cosets of H in G is a partition of G.
It is tempting to try to define a group structure on G/H from the group structure

of G. This is possible in a natural way if the subgroup H satisfies the following
condition.
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Definition 4.9. A subgroup H of G is normal iff gHg−1 = H for every g ∈ G. Here

gHg−1 := {ghg−1 ; h ∈ H}. (4.1)

Exercise 4.10. Show that a subgroup H of an abelian group G always is normal.

Exercise 4.11. Show that a subgroup H of a group G is normal iff

(g1H )(g2H ) = g1g2H ,

with the obvious interpretation of these sets.

Proposition 4.8. Let H be a normal subgroup of the group G. Then G/H is a group
under multiplication defined by (g1H )(g2H ) := g1g2H. The mapping Ψ : g 3 G 7→
gH ∈ G/H is a surjective homomorphism with ker(Ψ) = H.

Proof. The assumption that H is normal implies that the multiplication on G/H is
well defined, i.e. it does not depend on the representatives (g1, g2) chosen from each
equivalence class (g1H , g2H ), and that G/H is closed under multiplication. That
multiplication is associative follows from the associativity of multiplication in G. The
identity element in G/H is eH = H , and the inverse of gH is g−1H .

It is clear that Ψ as defined above is surjective. Furthermore Ψ(g1g2) = g1g2H =

g1Hg2H = Ψ(g1)Ψ(g2). Hence Ψ is a homomorphism. Finally gH = eH iff g ∈ H ,
and thus ker(Ψ) = H .

Definition 4.10. Let H be a normal subgroup of the group G. The group G/H is
called the quotient group of G by H .

Example 4.3. For a given n ∈ N let nZ = {nk ∈ Z ; k ∈ Z}. The set nZ is a
subgroup of the commutative group (Z,+). We define Zn := Z/nZ.

Exercise 4.12. Let G and H be two given groups and let f : G → H be a homomor-
phism. Show that the subgroup ker(f ) ⊂ G is normal.

We can now finally give the fundamental theorem for group homomorphisms.

Theorem 4.9. Let G and H be two given groups, and let f : G → H be a homo-
morphism. Then the quotient group G/ ker(f ) is isomorphic to the subgroup Im(f ) of
H.

Proof. Let K = ker(f ) and set f̃ (gK ) := f (g). The function f̃ : G/K → Im(f ) is
well defined since

f (g1) = f (g2) ⇔ f (g−1
1 g2) = eH ⇔ g−1

1 g2 ∈ K ⇔ g2K = g1K .

Since f̃ (g1Kg2K ) = f̃ (g1g2K ) = f (g1g2) = f (g1)f (g2) = f̃ (g1K )f̃ (g2K ), it is a
homomorphim and it is clearly surjective, and injectivity follows since

f̃ (gK ) = eH ⇔ f (g) = eH ⇔ g ∈ K .
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Chapter 5

Linear Algebra

The guiding theme in linear algebra is the interplay between algebraic manipulations
and geometric interpretations. This dual representation is what makes linear algebra a
fruitful and fascinating field of mathematics.

By the scalars, (F), we shall mean either the field of real numbers or the field of
complex numbers. A linear space (or vector space) X over F is, to begin with, a set
X together with a binary operation, vector addition (+), on X × X . To every pair of
elements (vectors) xi, xj ∈ X , there corresponds a vector xi + xj ∈ X (the sum of xi

and xj), such that

x1 + x2 = x2 + x1, x1, x2 ∈ X ,

(x1 + x2) + x3 = x1 + (x2 + x3), x1, x2, x3 ∈ X ,

∃ ! 0 ∈ X such that 0 + x = x + 0 = x, x ∈ X ,

∀ x ∈ X , ∃ ! (−x) ∈ X such that x + (−x) = 0.

Furthermore a vector space is by definition equipped with another operation, scalar
multiplication, m : F × X → X , which we shall denote by m(λ, x) = λx, λ ∈ F,
x ∈ X , such that

λ(x1 + x2) = λx1 + λx2, λ ∈ F, x1, x2 ∈ X ,

(λ1 + λ2)x = λ1x + λ2x, λ1, λ2 ∈ F, x ∈ X ,

(λ1λ2)x = λ1(λ2x), λ1, λ2 ∈ F, x ∈ X ,

1x = x, x ∈ X .

A linear space (or a vector space) is thus a commutative group, whose elements, which
we call vectors, can be multiplied by scalars (numbers). If the field of scalars is the real
(complex) number field, we shall say that X is a real (complex) vector space.

74



Example 5.1. The set

Rn := {(x1, x2, . . . , xn) ; x1, x2, . . . , xn ∈ R} ,

is a real linear space with the group operation and the scalar multiplication defined as

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn), λ ∈ R.

The group identity, 0, is of course the vector 0 := (0, 0, . . . , 0), and the group inverse
−(x1, x2, . . . , xn) := (−x1,−x2, . . . ,−xn).

In an analogous way, the set of complex n-tuples, Cn, is a complex vector space
under vector addition and scalar multiplication with complex numbers.

Exercise 5.1. Can the set Cn in a natural way be considered as a real vector space?

Example 5.2. The set of polynomials with real (complex) coefficients defined on the
real line R, P(R,R) (P(R,C)), is a real (complex) vector space, if addition and scalar
multiplication is defined in the natural way.

In the same way is the set of polynomials with real (complex) coefficients defined
on the real line R of degree less then or equal to n, Pn(R,R) (Pn(R,C)), a real (com-
plex) vector space.

Example 5.3. Let I be an index-set and let F (I ,R) (F (I ,C)) denote the set of real
valued (complex valued) functions on I . Then F (I ,R) (F (I ,C)) becomes a real
(complex) vector space with pointwise addition and multiplication.

Let J be a finite index set. The sum∑
k∈J

λkxk,

is called a linear combination of the set of vectors {xk}k∈J . The elements of the set
of scalars {λk}k∈J are called coefficients.

Definition 5.1. Let I be any index set (possibly non finite). A set {xk}k∈I of vectors
in a vector space X , is linearly independent iff for any finite subset J of I and any
linear combination ∑

k∈J

λkxk = 0 ⇒ λk = 0 for all k ∈ J .

If a set of vectors is not linearly independent, the set is called linearly dependent.

Note that, since we do not have a notion of distance in this setting, it does not
make sense to add more than a finite number of vectors.
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Exercise 5.2. Show that the set of homogeneous polynomials {xk}k∈N is a linearly
independent set of vectors in the vector space of complex polynomials on the real line
P(R,C).

Proposition 5.1. A non empty set S of non zero vectors in a linear space X is linearly
dependent iff (at least) one of them is a linear combination of some of the others.

Proof. If the set of vectors is linearly dependent, then there exist scalars λ1, λ2, . . . , λN ,
not all zero, and vectors x1, x2, . . . , xN from S such that

N∑
k=1

λkxk = 0.

We may assume (by renumbering if necessary) that λ1 6= 0 and thus we get

N∑
k=2

λk

λ1
xk = x1.

The other implication is immediate.

Definition 5.2. If every vector in a vector space X can be written as a linear combi-
nation of elements from a subset S in X , we say that the subset S span X .

The subsets that are both linearly independent and span the whole space are par-
ticularly important.

Definition 5.3. A basis in a linear space X is a set, S, of linearly independent vectors
that span X .

Example 5.4. The vectors (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1) con-
stitute a basis in the vector space Rn. It is called the natural or canonical basis of
Rn.

Example 5.5. The set of homogeneous polynomials {xk}k∈N is a basis in P(R,C).

It is a consequence of (and in fact equivalent to) the Axiom of Choice that every
vector space has a basis. From the Axiom of Choice it also follows the important fact
that given a linear space X and any linearly independent set of vectors {ei}i∈J in X ,
we can complement (i.e. possibly add more elements to it) this set to a basis.

Note that we can have many different sets of basis vectors for a given vector space.

Example 5.6. You might be familiar with the result that the set of vectors ai :=
(ai1, ai2, . . . , ain), i = 1, 2, . . . , n is a basis in Rn iff the determinant of the corre-
sponding matrix [aij] is non zero.
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We call a vector space finite dimensional iff we can find a basis containing only a
finite number of elements. Otherwise, we call it infinite dimensional.

The following so called basis theorem is fundamental.

Theorem 5.2. The number of elements in any basis of a vector space X is the same as in
any other basis for X , i.e. either X is infinite dimensional or any basis has the same finite
number of elements.

Remark. Actually one can prove that, also for infinite dimensional vector spaces, two
different sets of basis vectors always have the same cardinality.

Proof. If the space is infinite dimensional every basis has an infinite number of ele-
ments. Thus we may assume that the space is finite dimensional.

Let S1 = {ek}n
k=1 be a set that span X (since X is finite dimensional there exists

at least one such set), and let S2 = {fk}m
k=1, be a linearly independent set of vectors.

We shall prove that then m ≤ n.
We begin by noting that the set {f1, e1, e2, . . . , en} span X and is linearly depen-

dent. We conclude that we can eliminate one of the basis vectors coming from S1, say
e1 and still have a set that span X . Thus the set {f1, f2, e2, . . . , en} will span X and be
linearly dependent. Since the set S2 is linearly independent, we conclude that we can
eliminate one more vector from S1 and still have a set that span X , and so on. . .

If we in this process were to run out of elements from S1, we would reach a
contradiction to the linear independence of S2. Thus m ≤ n. In particular this
implies that any set of basis vectors has to be finite. If now S1 and S2 are two sets of
basis vectors, by switching their roles, we get n ≤ m, and thus m = n.

Definition 5.4. Let X be a vector space. We define the dimension of the space,
dim(X ), as the number of elements in any basis for X .

Proposition 5.3. Let X be a vector space, then a set of vectors {xi}i∈I is a basis iff every
x ∈ X in a unique way, i.e. with a unique finite subset of basis vectors with corresponding
unique coefficients, can be written as a linear combination of elements from {xi}i∈I .

Proof. The only thing that we have to prove is that the representation of a given
element in the basis is unique. If we have two representations of a given element, we
may, by setting some coefficients equal to zero, assume that they contain the same
basis vectors and then the result follows from the linear independence.

Definition 5.5. A non empty subset Y of a vector space X is called a linear subspace
iff

λ1x1 + λ2x2 ∈ Y for all x1, x2 ∈ Y and all scalars λ1, λ2.

Definition 5.6. Let S be any non empty subset of a linear space X . The linear hull
of S, lh(S), is then defined as the set of all linear combinations of vectors from S.
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Exercise 5.3. Show that for any non empty subset S of a linear space X , the linear
hull, lh(S), is a linear subspace in X .

When it is clear from the context that we are assuming a linear structure, we shall
sometimes omit the prefix linear in linear subspaces, and simply talk about subspaces
of linear spaces.

Exercise 5.4. Let X be a vector space and let M and N be two given subspaces. Show
that the sum

M + N := {m + n ∈ X ; m ∈ M , n ∈ N},

is a subspace of X .

Exercise 5.5. Let X be a vector space and let M and N be two given subspaces. Show
that the intersection M ∩ N is a subspace of X .

Definition 5.7. If two given subspaces M and N , of a linear space X , are such that
M ∩ N = {0} and M + N = X , we call them (algebraically) complementary
subspaces.

Theorem 5.4. Let M and N be two linear subspaces of a given linear space X . Then
M and N are complementary iff every vector x ∈ X in a unique way can be written as
m + n = x, where m ∈ M and n ∈ N .

Proof. If M and N are complementary it follows that every vector x ∈ X can be
written as a sum m + n = x, where m ∈ M and n ∈ N . That this representation is
unique follows from the fact that if m + n = m′ + n′, then m − m′ = n′ − n and
thus both sides are zero due to the fact that M ∩ N = {0}.

On the other hand, the unique representation property immediately implies that
the subspaces are complementary.

Definition 5.8. If M and N are complementary subspaces in X we will write X =

M ⊕ N and we say that X is the direct sum of M and N .

Theorem 5.5. If M and N are complementary subspaces in a given vector space X , then
dim(M ) + dim(N ) = dim(X ).

Proof. Let {mα}α∈A and {nβ}β∈B be two sets of basis vectors in M and N respectively,
then {mα}α∈A ∪ {nβ}β∈B is a set of basis vectors for X .

Exercise 5.6. Show that if {xi}m
i=1 is a linearly independent set, then the subspace

lh{xi}m
i=1 has dimension m.

Definition 5.9. Let X and Y be two vector spaces over the same field, F, of scalars.
A function T : X → Y is called a linear map (or vector space homomorphism) iff

T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2), λ1, λ2 ∈ F, x1, x2 ∈ X .
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Note that the identity map on any linear space X , I : X 3 x 7→ x ∈ X , is a linear
map.

Example 5.7. A given m× n matrix A represents a linear map ΦA from Rn to Rm by
the definition ΦA : Rn 3 x 7→ Ax ∈ Rm.

Definition 5.10. We say that two vector spaces X and Y over the same field of scalars
are (linearly) isomorphic iff we can find a bijective linear map T : X → Y . If X and
Y are isomorphic we shall write

X ' Y .

That the relation of being isomorphic is an equivalence relation on the set of vector
spaces follows from the following exercises.

Exercise 5.7. Show that the inverse of a vector space isomorphism is a linear map.

Exercise 5.8. Show that the composition of two linear maps, when it is defined, is a
linear map.

Exercise 5.9. Show that two isomorphic linear spaces are of the same dimension, i.e.
they are either both infinite dimensional or they are of the same finite dimension.

Example 5.7 is more than an example. Let X and Y be linear spaces with dimen-
sions dim(X ) = n and dim(Y ) = m, and let T : X → Y be a linear map. If we
select two sets of basis vectors {e1, e2, . . . , en} ⊂ X and {f1, f2, . . . , fm} ⊂ Y , we
have corresponding isomorphisms

Se : X 3 x = α1e1 + α2e2 + · · ·+ αnen 7→ (α1, α2, . . . , αn) ∈ Rn,

and
Sf : Y 3 y = β1f1 + β2f2 + · · ·+ βmfm 7→ (β1, β2, . . . , βm) ∈ Rm.

The linear map T together with these specific choices of basis vectors in X and Y ,
thus induce a unique linear map Te,f : Rn → Rm such that the following diagram
commutes.

X T−−−−→ Y

Se

y ySf

Rn −−−−→
Te,f

Rm

Where
Te,f : α = (α1, α2, . . . , αn)T 7→ Aα,

and the matrix A = [Aki], using Einstein’s summation convention, is defined by

T (ei) = Akifk, i = 1, 2, . . . , n.

Connected with any linear map, T : X → Y , are two natural subspaces.
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Definition 5.11. The subset

ker(T ) := {x ∈ X ; T (x) = 0},

is called the kernel of T .

Exercise 5.10. Show that the kernel of a linear map T : X → Y is a subspace of X .

The other natural subspace is of course the image

Im(T ) := {T (x) ∈ Y ; x ∈ X}.

Exercise 5.11. Show that the image set, Im(T ), of a linear map T : X → Y is a
subspace of Y .

If Z is a subspace of a given vector space X , over the field of scalars F , we can
define an equivalence relation on X by the rule

x1 ∼ x2 iff x1 − x2 ∈ Z .

Exercise 5.12. Show that this indeed defines an equivalence relation.

We can furthermore define a natural vector space structure on the quotient set
X/Z , coming from the vector space structure on X .

Exercise 5.13. Show that vector addition and scalar multiplication is well defined by

λ1[x1] + λ2[x2] := [λ1x1 + λ2x2], λ1, λ2 ∈ F , x1, x2 ∈ X ,

on the set of equivalence classes X/Z = {[x]}x∈X . Thus with this definition X/Z is
a vector space over F .

Exercise 5.14. Show that if
Y ⊕ Z = X ,

then Y and X/Z are isomorphic.

Proposition 5.6. Let X be a linear space and let Z be a subspace, then dim(X/Z ) +

dim(Z ) = dim(X ).

Proof. We may assume that Z is finite dimensional.
Let {z1, z2, . . . , zk} be a basis for Z . We complement it to a basis for X (that this

can be done in general is a consequence of the Axiom of Choice), say {z1, z2, . . . , zk}∪
{yα}α∈A.

Let Y := lh{yα}α∈A. From the fact that {z1, z2, . . . , zk} ∪ {yα}α∈A is a basis for
X it follows that Z and Y are complementary subspaces in X .

The proposition now follows since Y and X/Z are isomorphic.
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The following is the fundamental theorem for vector space homomorphisms
(or linear mappings).

Theorem 5.7. Let X and Y be two given vector spaces over the same field of scalars F ,
and let T : X → Y be a vector space homomorphism. Then the quotient space X/ ker(T )
is isomorphic to the subspace Im(T ) of Y , i.e.

X/ ker(T ) ' Im(T ).

Proof. Let K = ker(T ) and set T̃ ([x]) := T (x). The function

T̃ : X/K → Im(T )

is well defined since

T (x1) = T (x2)⇔ T (x1 − x2) = 0⇔ x1 − x2 ∈ K ⇔ [x1] = [x2].

It is a vector space homomorphism since

T̃ (λ1[x1] + λ2[x2]) = T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2)

= λ1T̃ ([x1]) + λ2T̃ ([x2]).

It is clearly surjective, and injectivity follows since

T̃ ([x]) = 0⇔ T (x) = 0⇔ x ∈ K .

An immediate corollary to this theorem is the following result, known as the di-
mension theorem.

Theorem 5.8. Let X and Y be two given vector spaces over the same field of scalars F ,
and let T : X → Y be a vector space homomorphism, then

dim(ker(T )) + dim(Y ) = dim(Y / Im(T )) + dim(X ).

Proof. From Theorem 5.7, we conclude that dim(X/ ker(T )) = dim(Im(T )), and
thus Proposition 5.6 concludes the proof.

In particular we note that for finite dimensional spaces X and Y , the (finite) num-
ber dim(ker(T )) − dim(Y / Im(T )) is independent of the operator T . In fact, by the
dimension theorem, it is equal to dim(X )− dim(Y ).

Definition 5.12. Let X and Y be two given vector spaces over the same field of scalars
F , and let T : X → Y be a vector space homomorphism, such that either ker(T ) or
Y / Im(T ) (or both) are finite dimensional. We then define the index of T , Ind(T ),
as

Ind(T ) := dim(ker(T ))− dim(Y / Im(T )).
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The index of an operator, T : X → Y , contains information about the solvability
of the equation

T (x) = y.

If T : X → Y is bijective, then Ind(T ) = 0. In particular we have that Ind(I ) = 0 if
I : X → X is the identity operator.

On the other hand if T : X → Y and Ind(T ) = 0, the only thing we can say is
that the number of linear conditions for solvability of the equation T (x) = y is equal
to the number of linearly independent solutions to the equation T (x) = 0.

Some further information is needed to draw precise conclusions. If we for instance
know that the index of an operator T is zero and also that T is injective or surjective,
we can conclude that T in fact is bijective. This is the familiar fact from linear algebra
that an n× n matrix has a two-sided inverse if it has a right or a left inverse.

Exercise 5.15. Let F (N,R) = {{ai}∞i=1 ; ai ∈ R} be the vector space of real valued
sequences and define the right and left shift operators on F (N,R) by

Tr(a1, a2, a3, . . . ) := (0, a1, a2, a3, . . . )

and
Tl (a1, a2, a3, . . . ) := (a2, a3, a4, . . . ).

Compute the index of these operators.

If T : X → Y is linear and X and Y are both finite dimensional, we noted above
that Ind(T ) = dim(X ) − dim(Y ). In particular the index in the finite dimensional
setting is independent of the operator. We can restate this as Ind(T ) = Ind(T + S)
for any linear operator S : X → Y .

In the infinite dimensional setting, this stability of the index is clearly not true.
Given a linear operator T : X → Y , such that Ind(T ) is defined, one could then
ask for which “perturbation operators” S it holds that Ind(T + S) is defined and
Ind(T ) = Ind(T + S). We shall show that if the perturbation operator S has finite
rank, i.e. if dim(ImS) <∞, then Ind(T ) = Ind(T + S).

To prove stability of the index under finite rank perturbations, we shall need some
preliminary results, the first being the quotient law for quotient spaces.

Theorem 5.9. If Z ⊂ Y are two subspaces of a linear space X , then we have that

(X/Z )/(Y /Z ) ' X/Y .

Proof. We note that Y /Z in a natural way can be seen as a subspace of X/Z .
We then define the quotient map q from X/Z to X/Y by

q([x ]Z ) := [x]Y , for all x ∈ X .

That q is well defined follows from the fact that if x1 − x2 ∈ Z , then x1 − x2 ∈ Y .
It is clear that q is linear and surjective. The result now follows directly from

Theorem 5.7 since the kernel of q is precisely Y /Z .
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Furthermore we shall need the logarithmic law for the index.

Theorem 5.10. Let Z ,Y and X be three linear spaces over the same field of scalars and
let S : X → Y and T : Y → Z be two linear maps, then Ind(T ◦ S) is defined and

Ind(T ◦ S) = Ind(T ) + Ind(S)

whenever the right hand side is well defined.

Remark. The right hand side above is well defined iff either both ker(T ) and ker(S)
are finite dimensional or both Z/ Im(T ) and Y / Im(S) are finite dimensional.

Proof. The result follows from the following linear equivalences.

ker(T ◦ S)/ ker(S) ' ker(T ) ∩ Im(S), (5.1)

ker(T )/(ker(T ) ∩ Im(S)) ' (ker(T ) + Im(S))/ Im(S), (5.2)

(Y / Im(S))/((ker(T ) + Im(S))/ Im(S)) ' Im(T )/ Im(T ◦ S), (5.3)

and the fact that

dim(Z/ Im(T ◦ S)) = dim(Z/ Im(T )) + dim(Im(T )/ Im(T ◦ S)). (5.4)

The linear equivalences are all consequences of the fundamental theorem for vector
space homomorphisms.

The equivalence (5.1) follows by considering the map

ker(T ◦ S) 3 x 7→ S(x) ∈ ker(T ) ∩ Im(S).

The equivalence (5.2) follows by considering the quotient map

ker(T ) 3 y 7→ [y ]Im(S) ∈ (ker(T ) + Im(S))/ Im(S).

The equivalence (5.3) follows by considering the map

Y / Im(S) 3 [y ]Im(S) 7→ [T (y) ]Im(T◦S) ∈ Im(T )/ Im(T ◦ S).

The equation (5.4) follows from the quotient law for quotient spaces.

We are now ready to state and prove the finite rank perturbation theorem.

Theorem 5.11. Let X and Y be linear spaces and let S : X → Y and T : X → Y be
linear maps such that Ind(T ) is defined. If S has finite rank, i.e. if dim(ImS) <∞, then
Ind(T + S) is defined and

Ind(T + S) = Ind(T ).
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Proof. Let i : ker(S)→ X denote the linear injection map i(z) = z for all z ∈ ker(S).
It is then clear that

(T + S) ◦ i = T ◦ i.

Since the injection i is injective Ind(i) = − dim(X/ ker(S)) which by hypothesis is
finite (since Im(S) ' X/ ker(S)). An application of the logarithmic law for the index
thus concludes the proof.

The finite rank condition on the perturbation operator S in Theorem 5.11 above,
can be seen as a “smallness” condition on the perturbation.

In fact this stability of the index, that is Ind(T ) = Ind(T + S), continuous to
hold in the infinite dimensional setting also under other smallness conditions on the
perturbation operator S.

If for instance T is continuous and the perturbation operator S is compact or
sufficiently small in norm one can show that Ind(T ) = Ind(T + S). We refer the in-
terested reader to the literature (see for instance J. B. Conway’s A Course in Functional
Analysis (1990)).
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Chapter 6

Banach and Hilbert spaces

In this chapter we shall study linear spaces that come equipped with a metric.
The fundamental assumption, that makes a useful theory possible, is that the

metric should be compatible with the linear structure in the sense that the operations

F× X 3 (λ, x) 7→ λx ∈ X and

X × X 3 (x1, x2) 7→ x1 + x2 ∈ X ,

both are continuous.
A useful theory for linear spaces equipped only with a topology satisfying exactly

these continuity assumptions can in fact be constructed (the theory for topological
vector spaces, see for instance Conway’s book on Functional Analysis).

In these notes we shall always assume that the topology comes from a metric which
in its turn is constructed from a norm.

6.1 Normed and inner product spaces

Definition 6.1. A normed linear space (X , ‖·‖)) is a linear space X over a field F,
with a function, the norm, X 3 x 7→ ‖x‖ ∈ [0,∞) such that

‖x‖ ≥ 0, x ∈ X with equality iff x = 0,

‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ , x1, x2 ∈ X ,

‖λx‖ = |λ| ‖x‖ , x ∈ X , λ ∈ F .

The field F will always be either the real numbers R or the complex numbers C.
If we want to emphasize that a norm refers to a specific space X we shall denote the
norm by ‖·‖X .

We notice that a normed linear space is a metric space with the metric

d (x1, x2) := ‖x1 − x2‖ , x1, x2 ∈ X .
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Before embarking on a study of normed linear spaces, we shall introduce linear
spaces equipped with another very special structure.

Definition 6.2. Let X be a linear space over the field F. An inner product (or scalar
product) on X is a function (·, ·) : X × X → F, such that for all α, β ∈ F and
x, y, z ∈ X , the following are satisfied:

(αx + βy, z) = α(x, z) + β(y, z),

(x, y) = (y, x),

(x, x) ≥ 0 with equality iff x = 0.

An inner product space (X , (·, ·)) is a linear space X together with a specific inner
product (·, ·).

The special thing about an inner product space is the fact that we can, in a fruitful
way, talk about angles between vectors in the space.

Definition 6.3. Let (X , (·, ·)) be an inner product space. We will say that two vectors
x and y in X are orthogonal iff (x, y) = 0.

Given a fixed non zero vector y in an inner product space (X , (·, ·)), we will call
the mapping

X 3 x 7→ (x, y)y
(y, y)

∈ X ,

the orthogonal projection on the line generated by the vector y. The following
fundamental inequality concerning the geometry of inner product spaces goes under
the name of Bunyakowsky-Cauchy-Schwartz inequality.

Proposition 6.1. Let (X , (·, ·)) be an inner product space, then for all x, y ∈ X we have
that

|(x, y)|2 ≤ (x, x)(y, y).

Proof. We may assume that (y, y) 6= 0. Then by a simple computation

(
x− (x, y)y

(y, y)
, x− (x, y)y

(y, y)

)
≥ 0

⇔
(x, y)(x, y) ≤ ((x, x)(y, y).

Exercise 6.1. Try to give a geometric interpretation (using the concept of orthogonal
projections) of the different terms in the computation in the proof above.

Possibly this gives you some impression of how useful a geometric point of view
can be, in particular when one is concerned with inner product spaces.
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From the computation in the proof above, we also conclude that if y 6= 0, we have
equality in the Bunyakowsky-Cauchy-Schwartz inequality if and only if x− (x,y)y

(y,y) = 0
i.e. iff x and y are parallel. (In the case when y = 0 this conclusion is of course trivially
true.)

The following proposition is more or less a corollary to the Bunyakowsky-Cauchy-
Schwartz inequality and the proof is left as an exercise to the reader.

Proposition 6.2. An inner product space (X , (·, ·)) is a normed linear space with the
norm defined by ‖x‖ := (x, x)1/2.

Proof. The only nontrivial thing that we have to prove is the triangle inequality which
follows from the Bunyakowsky-Cauchy-Schwartz inequality.

When we speak of an inner product space as a normed linear space, we shall always
assume that it is equipped with the norm coming from the inner product as described
in the proposition above.

Definition 6.4. A normed linear space that is complete in the metric coming from
the norm is called a Banach space.

Definition 6.5. An inner product space that is complete in the metric coming from
the norm is called a Hilbert space.

Example 6.1. The linear space Rn (and Cn) is a Hilbert space with the inner product

(x, y) :=
(
x1y1 + x2y2 + · · ·+ xnyn

)
,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
That this is an inner product is clear. The fact that Rn is complete with the metric

coming from the corresponding norm, follows from the fact that a Cauchy sequence
in Rn converges iff all the corresponding coordinate sequences converges and from the
fact that R is complete.

The linear space Rn equipped with the metric coming from the inner product
above is thus a Hilbert space. We denote it by l2(n,R) and the norm by ‖·‖2.

We have already encountered the linear space Rn e quipped with another norm
(or metric). In fact Rn is also a Banach space with the norm given by

‖x‖∞ := sup
1≤k≤n

(
|x1| , |x2| , . . . , |xn|

)
, x ∈ Rn.

The linear space Rn equipped with this norm is denoted by l∞(n,Rn).
A third simple example of how to equip Rn with a norm that makes it into a

Banach space is to define the norm by

‖x‖1 := |x1|+ |x2|+ · · ·+ |xn| , x ∈ Rn.
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Equipped with this norm we denote the linear space Rn by l1(n,R).
These are thus three different examples of how we can equip the linear space Rn

with a norm that makes it into a Banach space.
Recall that an inner product space always is a normed linear space (equipped with

the norm coming from the inner product). The opposite is not true. In fact the
following so called parallelogram law is typical for how a norm coming from an
inner product must behave.

Proposition 6.3. Let (X , (·, ·)) be an inner product space with the norm ‖·‖ coming from
the inner product. Then the following holds

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for all x, y ∈ X .

Proof. Write out the left hand side using the manipulation laws for the inner product
and cancel all except four of the terms.

Exercise 6.2. Show that the norms defined above for l1(n,R) and l∞(n,R) cannot
come from an inner product if n > 1.

Definition 6.6. In any normed linear space X , we define the unit ball as the set

B := {x ∈ X ; ‖x‖ ≤ 1} ,

and the unit sphere as the set

S := {x ∈ X ; ‖x‖ = 1} .

Exercise 6.3. Sketch the unit ball in R2 equipped with the norms ‖·‖1, ‖·‖2 and
‖·‖∞ defined above.

6.2 Convex sets and norms

In this section we will discuss the close relationship between norms and convex sets in
linear spaces.

The single most important property of the unit ball in a normed linear space is
that given two points in the ball, the “straight line” between the two points is also
contained in the ball.

Definition 6.7. A set C in a vector space X is convex iff

x1, x2 ∈ C ⇒ λ1x1 + λ2x2 ∈ C for all λ1, λ2 ≥ 0 such that λ1 + λ2 = 1.

Exercise 6.4. Show that the unit ball in a normed linear space is convex.

The simplest convex sets in a linear space are those generated by a finite set of
points in the following way.
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Definition 6.8. Let X be a linear space and let x1, x2, . . . , xN ∈ X . The set

P(x1, . . . xN ) := {λ1x1 + λ2x2 + · · ·+ λN xN ∈ X ;

for all λ1, λ2, . . . , λN ≥ 0 such that λ1 + λ2 + · · ·+ λN = 1}

is called the polytope generated by x1, . . . , xN .

Exercise 6.5. Show that a polytope is a convex set.

The following lemma says that a convex set contains every polytope generated by
points in the set and is characterized by this property.

Lemma 6.4. A set C in a vector space X is convex iff

x1, x2, . . . , xN ∈ C ⇒ λ1x1 + λ2x2 + · · ·+ λN xN ∈ C

for all λ1, λ2, . . . , λN ≥ 0 such that λ1 + λ2 + · · ·+ λN = 1.
(6.1)

Proof. The only thing we have to prove is that if C i s convex then (6.1) follows. We
prove this by induction over N . The statement is true for N ≤ 2. Now assume that
it is true for k ≤ N with N ≥ 2.

Take x1, x2, . . . , xN+1 ∈ C and λ1, λ2, . . . , λN+1 ≥ 0 such that λ1 + λ2 + · · ·+
λN+1 = 1.

We have to show that λ1x1 + λ2x2 + · · ·+ λN+1xN+1 ∈ C .
If λN+1 = 1, the result follows from the assumption (with k = 1), if not, by the

same assumption (with k = N ), we have that

λ1

1− λN+1
x1 +

λ2

1− λN+1
x2 + · · ·+ λN

1− λN+1
xN ∈ C .

We now use the assumption again (with k = 2) and conclude that

(1− λN+1)

(
λ1

1− λN+1
x1 + · · ·+ λN

1− λN+1
xN

)
+ λN+1xN+1 ∈ C .

The unit ball in a normed linear space is convex. On the other hand, given a
convex set C in a linear space X , we can, assuming some additional properties of C ,
construct a norm such that the unit ball with respect to this norm is precisely C .

Definition 6.9. Let X be a linear space. A set S in X is absorbing iff

∪t>0tS = X .

Remark. Note that if S is absorbing, then necessarily 0 ∈ S.

Definition 6.10. Let X be a linear space. A set S in X is balanced iff

x ∈ S and |λ| = 1 ⇒ λx ∈ S.
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Definition 6.11. Let X be a linear space. A set S in X is linearly closed iff given any
pair of distinct points x, y ∈ X the set

L := {t ∈ R ; x + t(y− x) ∈ S}

is closed (in R).

Definition 6.12. Let X be a linear space. A set S in X is linearly bounded iff given
any pair of distinct points x, y ∈ X the set

L := {t ∈ R ; x + t(y− x) ∈ S}

is bounded (in R).

Exercise 6.6. Show that the unit ball in a normed linear space is convex, absorbing,
balanced, linearly closed and linearly bounded.

Definition 6.13. Given a linear space X and a set S ⊂ X , we define the Minkowski
functional with respect to S, dS : X → [0,+∞], to be the function

dS(x) := inf{t ≥ 0 ; x ∈ tS}.

To construct the Minkowski functional for a given set is only interesting and natu-
ral if the set happens to have some properties that couples nicely with the construction.

Proposition 6.5. Let S be a convex, balanced, absorbing, linearly bounded set in a linear
space X over the scalars F . Then the Minkowski functional dS is a norm. If the set S also
is linearly closed, then

S = {x ∈ X ; dS(x) ≤ 1} .

Proof. Clearly dS(0) = 0 and since S is absorbing we conclude that dS : X → [0,∞),
i.e. it does not take t he value +∞.

Now if dS(x) = 0 for some x 6= 0 we could find a sequence of positive numbers
tn → 0 such that x/tn ∈ S which would contradict the linear boundedness of S.
Therefore dS(x) = 0 ⇒ x = 0.

If λ > 0 we have

dS(λx) = inf{t ≥ 0 ; λx ∈ tS} = inf{t ≥ 0 ; x ∈ t
λ

S}

= inf{λt ≥ 0 ; x ∈ tS} = λ dS(x).

Since S is balanced we have that dS(μx) = dS(x) for any x ∈ X if |μ| = 1. We
therefore conclude that |λ| dS(x) = dS(λx) for all x ∈ X and all λ ∈ F .

Now given x1 and x2 in X and positive numbers t1 and t2 such that x1/t1 ∈ S and
x2/t2 ∈ S, the convexity of S implies that t1

t1+t2
x1
t1

+ t2
t1+t2

x2
t2
∈ S. This immediately

gives that dS(x1 + x2) ≤ dS(x1) + dS(x2).
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We have thus proved that dS is a norm.
Since S is convex and balanced 0 ∈ S. Using the convexity again, we conclude

that if x ∈ t0S for some t0 > 0 then x ∈ tS for all t ≥ t0. This implies that

{x ∈ X ; dS(x) < 1} ⊂ S ⊂ {x ∈ X ; dS(x) ≤ 1} .

Now if S is linearly closed and dS(x) = 1 we can find a sequence of positive
numbers tn → 1 such that x/tn ∈ S. The linear closeness of S then implies that x ∈ S
which concludes the proof.

Let C be a convex set in a vector space X . A real valued function F : C → R is
said to be convex if the epigraph (the set above the graph in X × R) is convex.

Definition 6.14. Let C be a convex set in a vector space X . We say that a function
F : C → R, is convex iff F (λ1x1 + λ2x2) ≤ λ1F (x1) + λ2F (x2) for all x1, x2 ∈ C and
all λ1, λ2 ≥ 0 such that λ1 + λ2 = 1.

We notice that a norm X 3 x 7→ ‖x‖ ∈ R is a convex function.

Exercise 6.7. Let C be a convex set. Show that if F : C → R is convex, then

F (λ1x1 + λ2x2 + · · ·+ λN xN )

≤ λ1F (x1) + λ2F (x2) + · · ·+ λN F (xN )

for all x1, x2, . . . , xN ∈ C and all λi ≥ 0, i = 1, 2, . . . ,N such that λ1 + λ2 + · · ·+
λN = 1.

Remark. This fundamental inequality for convex functions goes under the name of
Jensen’s inequality.

Exercise 6.8. Show that, given p ∈ [1,∞), the function R 3 t 7→ |t|p ∈ R is convex.

As we have already noticed, the same linear space can be equipped with many
different norms.

One example is lp(n,R) for p = 1, 2,∞. We shall now generalize this to any
p ∈ [1,∞].

Proposition 6.6. The linear space Rn (and Cn) is for any given p ∈ [1,∞) a Banach
space with the norm

‖x‖p =
(
|x1|p + |x2|p + · · ·+ |xn|p

)1/p
.

Equipped with this norm the linear space Rn is called lp(n,R).

The proof of this proposition is left as an exercise to the reader, but in order to
prove that lp(n,R) is a Banach space, the only non trivial thing to check is the triangle
inequality for the norm. This is the content of our next theorem.

The triangle inequality for these norms goes under the name of Minkowski’s
inequality:
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Theorem 6.7. Given p ∈ [1,∞) and x, y ∈ Rn we have that

‖x + y‖p ≤ ‖x‖p + ‖y‖p .

Proof. For a fixed 1 ≤ p <∞ let

Sp := {x ∈ Rn ; ‖x‖p
p ≤ 1}.

The fact that Sp is a convex set in Rn follows directly from the convexity of the function
R 3 t 7→ |t|p ∈ [0,∞). Similarly it is easy to check that Sp is balanced, absorbing
and linearly bounded (do so!).

Now, using the homogeneity of the function t 7→ |t|p, we compute the Minkowski
functional for Sp,

dSp(x) := inf{t ≥ 0 ; x ∈ tSp} = inf{t ≥ 0 ;
∥∥∥x

t

∥∥∥
p
≤ 1} = ‖x‖p .

Thus the triangle inequality follows from the general result that the corresponding
Minkowski functional dSp(·) is a norm.

Exercise 6.9. Prove the Minkowski inequality follows directly from Jensen’s inequality
for the convex function t 7→ |t|p, together with the fact that this function is homoge-
neous of order p.

Another fundamental inequality that follows from Jensen’s inequality and homo-
geneity is Hölder’s inequality.

We say that p ∈ (1,∞) and p′ ∈ (1,∞) are conjugate exponents iff p′ =
p

p−1 , or

equivalently 1
p + 1

p′ = 1. (We shall also call 1 and +∞ conjugate exponents.)
The following result is Hölder’s inequality:

Lemma 6.8. Given p ∈ [1,∞) and x, y ∈ Rn we have that

|x1y1 + x2y2 + · · ·+ xnyn| ≤ ‖x‖p ‖y‖p′ ,

where 1
p + 1

p′ = 1.

Proof. We may assume that ‖x‖p = ‖y‖p′ = 1 and that xi 6= 0 for i = 1, . . . , n. The
triangle inequality gives

|x1y1 + x2y2 + · · ·+ xnyn| ≤ |x1| |y1|+ |x2| |y2|+ · · ·+ |xn| |yn| .

Thus from Jensen’s inequality applied to the function t 7→ |t|p
′

we get∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣
p′

≤

(
n∑

i=1

|xi|p |xi|1−p |yi|

)p′

≤
n∑

i=1

|xi|p (|xi|1−p |yi|)p/(p−1) = 1,

which concludes the proof.
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Exercise 6.10. Show that if p and p′ are conjugate exponents, then

ab ≤ |a|
p

p
+
|b|p

′

p′
, a, b ∈ R.

We now define what it means for two normed linear spaces to be equivalent.

Definition 6.15. If X and Y are two normed linear spaces over the same field, then
they are isometrically isomorphic iff there exists a bijective linear isometry T : X →
Y .

Exercise 6.11. Show that the property of being isometrically isomorphic is an equiv-
alence relation on the set of all normed linear spaces over the same field.

Exercise 6.12. Show that l1(n,R) is isomorphic to l∞(n,R).

Exercise 6.13. Show that lp(n,R) and lq(n,R) are not isometrically isomorphic if
p 6= q, n > 1 and p and q are not equal to 1.

In order to generalize the finite dimensional spaces lp(n,R) to infinitely many
dimensions, we shall begin with a slight reformulation.

Let n := {1, 2, 3, . . . , n} and consider the set of real valued functions on n,
F (n,R). Then F (n,R), with the natural vector space structure, is isomorphic as a
vector space to the vector space Rn.

Given 1 ≤ p <∞, we introduce the norm

‖f ‖lp :=

(
n∑

i=1

|f (i)|p
)1/p

,

on F (n,R). With this norm F (n,R) becomes a Banach space isometrically isomor-
phic with lp(n,R).

It is natural to replace n by other sets for instance the set of natural numbers N.
Given 1 ≤ p <∞, let lp(N,R) denote the set of real valued functions on N such

that
∞∑

i=1

|f (i)|p <∞.

Exercise 6.14. Show that lp(N,R) is a real vector space and that it becomes a real
Banach space with the norm

‖f ‖lp :=

( ∞∑
i=1

|f (i)|p
)1/p

.
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Example 6.2. Let M be any metric space and look at the set CB(M ,R) of bounded
continuous real valued functions on M . The set CB(M ,R) is a Banach space with
vector addition and scalar multiplication defined in the natural way, and with the
norm

‖f ‖ := sup
m∈M
|f (m)| .

That it is complete as a metric space follows from the fact that R is complete.

This example can be generalized.

Example 6.3. Let M be a metric space and let X be a Banach space. Look at the set
CB(M ,X ) of bounded continuous X -valued functions on M . The set CB(M ,X ) is
a Banach space with vector addition and scalar multiplication defined in the natural
way, and with the norm

‖f ‖CB(M ,X ) := sup
m∈M
‖f (m)‖X , .

That it is complete as a metric space follows from the fact that X is complete.

If the metric space M in the example above happens to be compact, then all
continuous X -valued functions on M are bounded and we conclude that the space
C (M ,X ) is a Banach space. If for instance I is a non empty compact interval on R,
then C (I ,X ) is a Banach space.

Here we are using the sup-norm on C (I ,X ) without explicitly mentioning it. We
can of course put many different norms on, lets say for instance C ([0, 1],R).

Exercise 6.15. Show that ∫ 1

0
|f (x)| dx,

is a norm on C ([0, 1],R). Furthermore, show that with this norm C ([0, 1],R) is not
complete as a metric space.

Exercise 6.16. Show that given 1 ≤ p <∞(∫ 1

0
|f (x)|p dx

)1/p

,

is a norm on C ([0, 1],R).

Hint. Use Riemann sums that approximate the integrals.

Exercise 6.17. Let I be a nonempty and compact interval in R and let X be a Banach
space. Show that the vector space C (I ,X ) is infinite dimensional if dim(X ) > 0.

Note that a closed linear subspace of a Banach space is a Banach space in its own
right with the metric coming from the norm.
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Exercise 6.18. Let X be a Banach space and consider the Banach space C ([a, b],X ).
Show that the subspace

C0([a, b],X ) = {f ∈ C ([a, b],X ) ; f (a) = f (b) = 0} ,

is closed. What is the dimension of the quotient space C (I ,X )/C0(I ,X )?

We shall now briefly study operators that take into account both the topological
and the algebraic structure, i.e. linear and continuous maps.

The following result is often useful.

Theorem 6.9. Let X and Y be two normed linear spaces over the same field F and let
T : X → Y be a linear map. Then T is continuous iff there exists a constant C > 0 such
that

‖T (u)‖Y ≤ C ‖u‖X , u ∈ X . (6.2)

Proof. If T is a linear operator that satisfies condition (6.2), then T is (even Lips-
chitz) continuous at a point u0 ∈ X , since ‖T (u)− T (u0)‖Y = ‖T (u− u0)‖Y ≤
C ‖u− u0‖X . On the other hand, assume that T is linear and continuous and that
condition (6.2) does not hold. Then we can find a sequence {un}n∈N such that

‖T (un)‖Y ≥ n ‖un‖X , n ∈ N,

which by the linearity of T implies∥∥∥T (
un

n
un ‖X ‖)

∥∥∥
Y
≥ 1, n ∈ N.

Since un
n‖un‖X

→ 0 as n→∞, this contradicts the continuity of T .

The following definition concerns maps that preserve the topological as well as the
algebraic structure.

Definition 6.16. We say that two normed linear spaces X and Y over the same field
F , are isomorphic (as topological vector spaces) iff there exists a bijective linear con-
tinuous map T : X → Y with a continuous inverse.

Remark. By Banach’s open mapping theorem that we will prove later, the last assump-
tion, i.e. that the inverse also is continuous, is superfluous when the spaces are Banach
spaces.

Exercise 6.19. Show that the property of being isomorphic (as topological vector
spaces) is an equivalence relation on the set of all normed linear spaces over the same
field.
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Exercise 6.20. Let X and Y be two normed linear spaces over the same field. Show
that they are isomorphic as topological vector spaces iff there exists a surjective linear
map T : X → Y and two positive constants c and C such that

c ‖x‖X ≤ ‖T (x)‖Y ≤ C ‖x‖X , x ∈ X .

Exercise 6.21. Let X and Y be two normed linear spaces over the same field and let
T : X → Y be a linear map. Show that

‖T (x)‖Y ≤ C ‖x‖X , x ∈ X

iff
T (B1(0)) ⊂ BC (0),

where Br(a) denotes the closed ball with radius r and centre a in the respective normed
linear spaces.

We shall now prove the result that, for a fixed n ∈ N, all n-dimensional normed
linear spaces are isomorphic (as topological vector spaces).

In particular we can then conclude that, in a finite dimensional normed linear
space, the properties of a set of being open, closed or compact do not depend on the
norm. Also, finite dimensional normed linear spaces are complete spaces in the metric
coming from the norm.

Proposition 6.10. Let n ∈ N be fixed. Then every n-dimensional normed linear space
X is isomorphic to l∞(n,R).

Proof. Let X be an n-dimensional normed linear space with norm ‖·‖X . Then there
exists a basis x1, x2, . . . , xn of X .

We can now define a bijective linear map T from l∞(n,R) to X by

T ((α1, α2, . . . , αn)) := (α1x1 + α2x2 + · · ·+ αnxn).

By the triangle inequality in X the map T is continuous.
Now let S be the unit sphere in l∞(n,R). The sphere S is clearly closed and

bounded and thus compact (by the Heine-Borel lemma) in the metric on l∞(n,R).
Since T is continuous, the function

S 3 (α1, α2, . . . , αn) 7→ ‖(α1x1 + α2x2 + · · ·+ αnxn)‖X ∈ [0,∞)

is continuous and thus, since S is compact, attains its minimum value on S. This
value cannot be zero.

We conclude that there exists a constant c > 0 such that

c ‖α‖X ≤ ‖T (α)‖X , α ∈ Rn.

The proposition follows.
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Exercise 6.22. Let X and Y be finite dimensional normed linear spaces, and let T :
X → Y be a bijective and continuous linear map.

Show that the inverse is continuous.

The statement in this exercise is actually true also in the infinite dimensional case
(when the spaces involved are complete). This is the content of Banach’s open map-
ping theorem.

Theorem 6.11. Let X and Y be Banach spaces over the same field and let T : X →
Y be a bijective and continuous linear operator. Then the inverse operator T−1 is also
continuous.

Proof. Let Bn := {x ∈ X ; ‖x‖X ≤ n}. Since T is linear we first note that it is enough
to prove that there exists a ball Bδ(0) ⊂ Y , with radius δ > 0 and centre 0, such that

Bδ(0) ⊂ T (B1).

Now, it is clear that
∪∞n=1T (Bn) = Y ,

and thus since Y is a complete metric space, by Baire’s theorem, there exists an open
ball Bε(y) ⊂ Y with radius ε > 0 and centre y and an m ∈ N such that

Bε(y) ⊂
(

T (Bm)
)◦
.

Since T is linear we conclude (take a sequence {xk}∞k=1 in Bm such that T (xk) → y
and subtract) that

Bε(0) ⊂
(

T (B2m)
)◦
.

Again, since T is linear this implies that

B2δ(0) ⊂
(

T (B1)
)◦
, (6.3)

with δ = ε/4m.
Now taking y ∈ Bδ(0) by (6.3) we can find x1 ∈ B1/2 such that

‖y − T (x1)‖Y ≤
δ

2
.

Then again by (6.3) we can now find x2 ∈ B1/22 such that

‖y − T (x1 + x2)‖Y ≤
δ

22 .

By repeating this argument we get a Cauchy sequence {x1+x2+· · ·+xk}∞k=1 contained
in B1. Since X is complete and B1 is closed, we conclude that the sequence converges
to an element x in B1. Finally since T is continuous we get that T (x) = y and the
proof is complete.
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Exercise 6.23. Can the proof of Banach’s theorem above, using Baire’s theorem, be
simplified in the case when the spaces happen to be finite dimensional?

The proof of the following proposition is left as an exercise to the reader.

Proposition 6.12. Given two normed linear spaces X and Y the set of continuous linear
operators from X to Y , L(X ,Y ), is itself a normed linear space, with the natural linear
structure and with the norm

‖T‖ := sup
‖u‖X≤1

‖T (u)‖Y .

Exercise 6.24. Show that if the vector space Y is complete, then so is L(X ,Y ).

Finally, recall that, given a metric space M , we can always find a complete metric
space M̃ such that M can be identified with a dense subset in M̃ . We constructed M̃
as the set equivalence classes of Cauchy sequences in M . If M happens to be a normed
linear space, the vector space structure on M can be carried over to M̃ .

The proof of the following theorem is left to the reader.

Theorem 6.13. Let (X , ‖·‖X ) be a normed linear space. Then there exists a complete
normed linear space (X̃ , ‖·‖X̃ ) and a continuous linear injective partial isometry I : X →
X̃ such that I (X ) is dense in X̃ .

Linear functions have many nice properties. We shall now look at mappings that
are locally almost linear, i.e. differentiable mappings.

6.3 Differentiation and integration in Banach spaces

A map F : X → Y between two normed linear spaces is differentiable iff it locally is
almost affine.

Definition 6.17. Let X and Y be normed linear spaces over the same field and let
U ⊂ X be an open set. A mapping F : U → Y is differentiable in a point u ∈ U iff
there exists an element Au ∈ L(X ,Y ) such that

F (u + h)− F (u) = Au(h) + o(h, u), h ∈ U \ {u},

where o(h, u) ∈ Y and
o(h, u)
‖h‖X

→ 0 as h→ 0.

If F : U → Y is differentiable in u, then the linear operator Au is unique and we
call it the derivative of F in u and we write Au = F ′(u).

Note that differentiability (like continuity) is a local property.
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Exercise 6.25. Let X and Y as above be normed linear spaces and let F : X → Y be
a continuous linear map. What is the derivative of F in a point u ∈ X ?

Notice that if F : U → Y is differentiable, then U 3 u 7→ F ′(u) ∈ L(X ,Y ).
If this map is continuous we say that F is continuously differentiable on U and we
write F ∈ C1(U ,Y ).

We will now prove the inverse function theorem that says that locally a differen-
tiable map is as well behaved as its differential.

Theorem 6.14. Let X and Y be Banach spaces over the same field, let U ⊂ X be an
open subset and let F ∈ C1(U ,Y ). If F ′(u) ∈ L(X ,Y ) is a bijection, then there exist
open neighborhoods U0 of u and V0 of F (u) and a mapping G ∈ C1(V0,X ) such that
F ◦ G = IY and G ◦ F = IX , i.e. F locally has a continuously differentiable inverse.

Proof. Banach’s fixed point theorem together with Banach’s open mapping theorem.

We shall also need to be able to integrate functions defined on subsets of the
real line taking values in normed linear spaces. We shall define integration using the
following extension theorem and for this we need the spaces to be complete.

Lemma 6.15. Let M be a normed linear space, let N be a Banach space and let A be a
dense linear subspace of M. The subset A is then a normed linear space in its own right
with the norm inherited from M. A uniformly continuous linear function f : A → N
can be uniquely extended to a continuous linear function F : M → N . This means that
there exists a continuous linear function F : M → N such that

F (x) = f (x), x ∈ A,

and that if F ,G : M → N are continuous functions that agree on A, then they agree on
M.

Proof. This is Lemma 3.15, taking into account the algebraic structure as well. We
leave the details to the reader.

Let X be a Banach space and let I ⊂ R be a compact interval. Let s be a step
function on I with values in X , i.e.

s(t) =

N∑
i=1

skχIk (t).

Here {Ik}N
k=1 is a partition of I in intervals and χIk denotes the characteristic function

of a set Ik.
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For a step function s we define the integral over the interval I as∫
I

s(t) dt =

N∑
i=1

sk |Ik| ,

where |Ik| denotes the length of the interval Ik. Note that
∫

I s(t) dt ∈ X and that this
is independent of the partition chosen, in the sense that if we refine the partition, the
integral defined above does not change.

Let S(I ,X ) denote the set of step functions on I with values in X . This becomes
a normed linear space with the natural vector space structure and with the norm

‖s‖ := sup
t∈I
‖s(t)‖X .

The linear function

S(I ,X ) 3 s 7→
∫

I
s(t) dt ∈ X ,

is continuous, in fact it is Lipschitz continuous with Lipschitz constant |I | (check
this!).

We can thus uniquely extend this function to the completion of S(I ,X ). We
call the completion, R(I ,X ), the vector space of ruled functions and we of course
continue to call the extended function the integral of a given ruled function.

Exercise 6.26. Show that there exists a continuous linear partial isometry

P : C (I ,X )→ R(I ,X ),

i.e. we can identify the space of continuous functions on I with values in X with a
(closed) subspace of the space of ruled functions. (Do we have C (I ,X ) = R(I ,X )?)

Hint. If u ∈ C (I ,X ), the intervals {Ik}N
k=1 are partitions of I such that supk |Ik| → 0

as N →∞ and tk ∈ Ik, k = 1, 2, . . . ,N , then the Riemann sums

N∑
k=1

u(tk) |Ik|

converges to a point I (u) ∈ X independent of the particular partition. Use this to
construct an equivalence class of Cauchy sequences in S(I ,X ) corresponding to the
function u ∈ C (I ,X ).

Note that in the construction above we could have equipped S(I ,X ) with some
other norm such that

S(I ,X ) 3 s 7→
∫

I
s(t) dt ∈ X ,
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is continuous, and in this way obtain different complete spaces of “integrable func-
tions”. The most natural norm is perhaps

‖s‖1 :=
∫

I
‖s(t)‖X dt,

or generally

‖s‖p :=

(∫
I
‖s(t)‖p

X dt
)1/p

, for a fixed p ∈ [1,∞).

We then call the completion, Lp(I ,X ), the space of p’th power Lebesgue integrable
functions.

For a step function s ∈ S(I ,X ) the triangle i nequality for the norm ‖·‖X gives∥∥∥∥∫
I

s(t) dt

∥∥∥∥
X
≤
∫

I
‖s(t)‖X dt.

We continue to call this the triangle inequality and by continuity it holds for every
Lebesgue–integrable function.

When I ⊂ R is a (non empty) interval, then C1(I ,X ) is the set of functions such
that I 3 t 7→ F ′(t) ∈ L(R,X ) exists and is continuous. Note here that L(R,X ) is
naturally isomorphic to X , the isomorphism being given by L(R,X ) 3 λ 7→ λ(1) ∈ X
and, with this identification, we can thus regard F ′(t) as belonging to X . In the
following, this is done.

We shall now make a more detailed study of the differentiation operator

D : C1(I ,X ) 3 u 7→ du
dt
∈ C0(I ,X ).

We shall prove the so called fundamental theorem of analysis for Banach space
valued functions of one real variable. The result roughly says that integration and
differentiation are inverse operations and describes the kernel and the image of the
differentiation operator. We shall split the result into two theorems, the first one saying
that integration is a “right invers” of differentiation. In particular we can conclude that
the image of the differentiation operator above is all of C0(I ,X ).

Theorem 6.16. Let X be a Banach space and let I ⊂ R be a nonempty interval. If
u ∈ C0(I ,X ) then

d
dt

∫ t

t0
u(s) ds = u(t) for all t, t0 ∈ I .

Proof. We have to prove that∫ t+h

t0
u(s) ds −

∫ t

t0
u(s) ds − u(t)h = o(h).
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This follows since∫ t+h

t0
u(s) ds −

∫ t

t0
u(s) ds − u(t)h =

∫ t+h

t
(u(s)− u(t)) ds,

(where the additivity of the integral used above follows by continuity from the fact
that it holds for step functions), and thus given ε > 0 the continuity of u at t implies
that ∥∥∥∥∥

∫ t+h

t0
u(s) ds −

∫ t

t0
u(s) ds − u(t)h

∥∥∥∥∥
X

≤ ε |h| ,

if |h| is small enough.

The next result describes the kernel of the differentiation operator.

Theorem 6.17. Let X be a Banach space and let I ⊂ R be an interval. If u ∈ C1(I ,X )
and

u′(t) = 0 for all t ∈ I ,

then I 3 t 7→ u(t) ∈ X is constant.

This theorem is an immediate corollary to the following lemma that in the vector
valued case replaces the mean value theorem valid for real valued functions.

Lemma 6.18. Let X be a Banach space and let I ⊂ R be a nonempty interval. If
u ∈ C1(I ,X ) and t, s ∈ I , we have that

‖u(t)− u(s)‖X ≤ sup
τ∈I

∥∥u′(τ)
∥∥ |t − s| . (6.4)

Proof. We give a topological “continuation in a parameter proof”.
Fix s, t ∈ I and take M > sup

τ∈I ‖u′(τ)‖ (If sup
τ∈I ‖u′(τ)‖ = +∞ the result is

trivially true.). Now let E ⊂ [0, 1] be the set of all 0 ≤ λ ≤ 1 such that

‖u(s + λ(t − s))− u(s)‖X ≤ Mλ |t − s| .

We know that 0 ∈ E , so E is non empty, and we want to prove that 1 ∈ E .
Since u is continuous, E is closed and so E has a largest element λ0. We shall show

that λ0 = 1.
If λ0 ∈ E with λ0 6= 1, then from the differentiability of u and

‖u(s + λ(t − s))− u(s)‖X

≤ ‖u(s + λ(t − s))− u(s + λ0(t − s))‖X + ‖u(s + λ0(t − s))− u(s)‖X ,

we conclude that λ0 + ε ∈ E for some ε > 0, and thus λ0 = 1. This means that

‖u(t)− u(s)‖X ≤ M |t − s|

for all M > sup
τ∈I ‖u′(τ)‖ which concludes the proof.
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We now know that integration is a right inverse of the differentiation operator
D : C1(I ,X ) → C0(I ,X ) and that the kernel of D, ker(D) =: K is precisely the
subspace of constant functions. Thus by the homomorphism result for linear maps,
differentiation D : C1(I ,X )→ C0(I ,X ) naturally gives rise to a linear bijection

D̃ : C1(I ,X )/K → C0(I ,X ),

where D̃[u] = du
dt .

Since integration is a right inverse of D we conclude that up to an additive constant
it is also a left inverse, in fact we have that:

Theorem 6.19. Let X be a Banach space and let I ⊂ R be an interval. If u ∈ C1(I ,X ),
then

u(t)− u(t0) =

∫ t

t0
u′(s) ds for all t, t0 ∈ I .

Proof. Since the two functions I 3 t 7→
∫ t

t0
u′(s) ds ∈ X and I 3 t 7→ u(t) ∈ X by

Theorem 6.16 have the same derivative on I , they only differ by a constant which is
easily computed.

Exercise 6.27. Compute the index of D : C1(I ,X )→ C0(I ,X ).

6.4 Ordinary differential equations in Banach spaces

Let X be a Banach space and let f : X → X be a Lipschitz continuous function, i.e.
there exists a constant θ such that

‖f (x)− f (y)‖X ≤ θ ‖x− y‖X , x, y ∈ X .

The following result then holds.

Theorem 6.20. Given p ∈ X , and t0 ∈ R, there exists an interval I ⊂ R such that
t0 ∈ I and a unique function u ∈ C1(I ,X ) such that

u′(t) = f (u(t)), t ∈ I ,

u(t0) = p.
(6.5)

To prove this result we shall reformulate the problem. From the fundamental
theorem of analysis it follows that u ∈ C1(I ,X ) satisfies(6.5) iff u ∈ C (I ,X ) satisfies

u(t) = p +

∫ t

t0
f (u(s)) ds, t ∈ I .

Now, given an interval I such that t0 ∈ I , we contemplate the Banach space
C (I ,X ) and the mapping

T (u) := p +

∫ t

t0
f (u(s)) ds, t ∈ I .
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Clearly T : C (I ,X ) → C (I ,X ), and we also note that u ∈ C1(I ,X ) satisfies (6.5) iff
u ∈ C (I ,X ) is a fixed point for the mapping T .

The following lemma will give Theorem 6.20 as a corollary.

Lemma 6.21. Let θ be the Lipschitz constant for the function f introduced above. If the
interval I satisfies |I | θ < 1, then the mapping T has a unique fixed point.

Proof. We shall prove that if |I | θ < 1, then the mapping T : C (I ,X )→ C (I ,X ) is a
strict contraction. The result then follows from Banach’s fixed point theorem. In fact

‖T (u)(t)− T (v)(t)‖X =

∥∥∥∥∫ t

t0
(f (u(s))− f (v(s))) ds

∥∥∥∥
X

≤
∫ t

t0
‖(f (u(s))− f (v(s)))‖X ds ≤

∫ t

t0
θ ‖(u(s)− v(s))‖X ds

≤ |I | θ sup
s∈I
‖(u(s)− v(s))‖X .

Taking the supremum over t ∈ I completes the proof.

We conclude with a remark on global solvability. We note that the length of the
interval I where we uniquely could solve our initial value problem did not depend
on the initial time t0, nor on our start value p, but only on the Lipschitz constant θ.
Using this lemma subsequently on overlapping subintervals Iα (with constant measure
m such that mθ < 1), and with corresponding sequences of start values and start times
laying in our subintervals, we can continue the solution to larger and larger subsets of
R. In the end we get a unique solution defined on the whole real line. That is, we can
take the interval I in Theorem 6.20 to be the whole real line.
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