The non increasing rearrangement of a measurable function.
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space.
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable \(f : \Omega \to \mathbb{C}\),
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^*.
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable \(f : \Omega \to \mathbb{C}\), the non increasing rearrangement of \(f\) is a non increasing right continuous function \(f^*\) defined on the interval \((0, \infty)\), with the property that

\[
\left\{ t > 0 : f^*(t) > \alpha \right\} = \lambda \left(\left\{ x \in \Omega : |f(x)| > \alpha \right\} \right)
\]

for all \(\alpha > 0\).

Consequently, \(\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x)\) for all \(p > 0\).

Example: If \(f = 2 \chi_A + 4 \chi_B + 9 \chi_C\), where \(A\), \(B\) and \(C\) are disjoint subsets of \(\Omega\) of finite measure, then \(f^* = 9 \chi_I_C + 4 \chi_I_B + 2 \chi_I_A\), where \(I_C\), \(I_B\) and \(I_A\) are consecutive intervals, whose lengths equal \(\lambda(C)\), \(\lambda(B)\) and \(\lambda(A)\).

(Here is a picture: We suppose here that \(\lambda\) is two dimensional Lebesgue measure on some subset \(Q\) of \(\mathbb{R}^2\).)
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.

$$\left| \left\{ t > 0 : f^*(t) > \alpha \right\} \right| = \lambda \left(\left\{ x \in \Omega : |f(x)| > \alpha \right\} \right)$$
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.

$$\{|t > 0 : f^*(t) > \alpha\} = \lambda (\{x \in \Omega : |f(x)| > \alpha\}) \text{ for all } \alpha > 0.$$
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.

$$\{ t > 0 : f^*(t) > \alpha \} = \lambda (\{ x \in \Omega : |f(x)| > \alpha \}) \quad \text{for all } \alpha > 0.$$

Consequently,

$$\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x).$$
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable \(f : \Omega \to \mathbb{C}\), the non increasing rearrangement of \(f\) is a non increasing right continuous function \(f^*\) defined on the interval \((0, \infty)\), with the property that \(f^*\) has the same distribution function as \(|f|\).

\[
\{|t > 0 : f^*(t) > \alpha\} = \lambda(\{x \in \Omega : |f(x)| > \alpha\}) \quad \text{for all } \alpha > 0.
\]

Consequently,

\[
\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x) \quad \text{for all } p > 0.
\]
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable \(f : \Omega \to \mathbb{C}\), the non increasing rearrangement of \(f\) is a non increasing right continuous function \(f^*\) defined on the interval \((0, \infty)\), with the property that \(f^*\) has the same distribution function as \(|f|\).

\[
\{ t > 0 : f^*(t) > \alpha \} = \lambda (\{ x \in \Omega : \lvert f(x) \rvert > \alpha \}) \quad \text{for all } \alpha > 0.
\]

Consequently,

\[
\int_0^\infty (f^*(t))^p \, dt = \int_\Omega \lvert f(x) \rvert^p \, d\mu(x) \quad \text{for all } p > 0.
\]

Example:
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable function \(f : \Omega \to \mathbb{C}\), the non increasing rearrangement of \(f\) is a non increasing right continuous function \(f^*\) defined on the interval \((0, \infty)\), with the property that \(f^*\) has the same distribution function as \(|f|\).

\[
\{ t > 0 : f^*(t) > \alpha \} = \lambda (\{ x \in \Omega : |f(x)| > \alpha \}) \text{ for all } \alpha > 0.
\]

Consequently,

\[
\int_0^{\infty} (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x) \text{ for all } p > 0.
\]

Example: If \(f = 2\chi_A + 4\chi_B + 9\chi_C\),
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.

$$|\{ t > 0 : f^*(t) > \alpha \} = \lambda(\{ x \in \Omega : |f(x)| > \alpha \})| \quad \text{for all } \alpha > 0.$$

Consequently,

$$\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x) \quad \text{for all } p > 0.$$

Example: If $f = 2\chi_A + 4\chi_B + 9\chi_C$, where A, B and C are disjoint subsets of Ω of finite measure,
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \to \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.

$$\{|t > 0 : f^*(t) > \alpha\} = \lambda (\{x \in \Omega : |f(x)| > \alpha\}) \quad \text{for all } \alpha > 0.$$

Consequently,

$$\int_0^{\infty} (f^*(t))^p \, dt = \int_{\Omega} |f(x)|^p \, d\mu(x) \quad \text{for all } p > 0.$$

Example: If $f = 2\chi_A + 4\chi_B + 9\chi_C$, where A, B and C are disjoint subsets of Ω of finite measure, then $f^* = 9\chi_I_C + 4\chi_I_B + 2\chi_I_A$, where I_C, I_B and I_A are consecutive intervals, whose lengths equal $\lambda(C)$, $\lambda(B)$ and $\lambda(A)$.
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable \(f : \Omega \to \mathbb{C}\), the non increasing rearrangement of \(f\) is a non increasing right continuous function \(f^*\) defined on the interval \((0, \infty)\), with the property that \(f^*\) has the same distribution function as \(|f|\).

\[
\{ t > 0 : f^*(t) > \alpha \} = \lambda (\{x \in \Omega : |f(x)| > \alpha\}) \text{ for all } \alpha > 0.
\]

Consequently,

\[
\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x) \text{ for all } p > 0.
\]

Example: If \(f = 2\chi_A + 4\chi_B + 9\chi_C\), where \(A\), \(B\) and \(C\) are disjoint subsets of \(\Omega\) of finite measure, then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A}\), where \(I_C\), \(I_B\) and \(I_A\) are consecutive intervals, whose lengths equal \(\lambda(C)\), \(\lambda(B)\) and \(\lambda(A)\).
The non increasing rearrangement of a measurable function.

Let $(\Omega, \Sigma, \lambda)$ be a measure space. For each “reasonable” measurable $f : \Omega \rightarrow \mathbb{C}$, the non increasing rearrangement of f is a non increasing right continuous function f^* defined on the interval $(0, \infty)$, with the property that f^* has the same distribution function as $|f|$.

$$\left| \{ t > 0 : f^*(t) > \alpha \} \right| = \lambda (\{ x \in \Omega : |f(x)| > \alpha \}) \text{ for all } \alpha > 0.$$

Consequently,

$$\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x) \text{ for all } p > 0.$$

Example: If $f = 2\chi_A + 4\chi_B + 9\chi_C$, where A, B and C are disjoint subsets of Ω of finite measure, then $f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A}$, where I_C, I_B and I_A are consecutive intervals, whose lengths equal $\lambda(C)$, $\lambda(B)$ and $\lambda(A)$.

(Here is a picture:)

[Picture of a graph or diagram related to the rearrangement of a function.]}
The non increasing rearrangement of a measurable function.

Let \((\Omega, \Sigma, \lambda)\) be a measure space. For each “reasonable” measurable \(f : \Omega \rightarrow \mathbb{C}\), the non increasing rearrangement of \(f\) is a non increasing right continuous function \(f^*\) defined on the interval \((0, \infty)\), with the property that \(f^*\) has the same distribution function as \(|f|\).

\[|\{ t > 0 : f^*(t) > \alpha \} = \lambda (\{ x \in \Omega : |f(x)| > \alpha \}) | \text{ for all } \alpha > 0. \]

Consequently,

\[\int_0^\infty (f^*(t))^p \, dt = \int_\Omega |f(x)|^p \, d\mu(x) \text{ for all } p > 0. \]

Example: If \(f = 2\chi_A + 4\chi_B + 9\chi_C\), where \(A\), \(B\) and \(C\) are disjoint subsets of \(\Omega\) of finite measure, then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A}\), where \(I_C\), \(I_B\) and \(I_A\) are consecutive intervals, whose lengths equal \(\lambda(C)\), \(\lambda(B)\) and \(\lambda(A)\).

(Here is a picture: We suppose here that \(\lambda\) is two dimensional Lebesgue measure on some subset \(Q\) of \(\mathbb{R}^2\).)
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A \), \(B \) and \(C \) are disjoint subsets of \(Q \), then

\[
\begin{align*}
\hat{f} &= 9\chi_I C + 4\chi_I B + 2\chi_I A,
\end{align*}
\]

where \(I_C \), \(I_B \) and \(I_A \) are consecutive intervals, whose lengths equal \(\lambda(C) \), \(\lambda(B) \) and \(\lambda(A) \).
If $f = 2\chi_A + 4\chi_B + 9\chi_C$,

where A, B and C are disjoint subsets of Q,

where I_C, I_B and I_A are consecutive intervals, whose lengths equal $\lambda(C)$, $\lambda(B)$ and $\lambda(A)$.
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C, I_B \) and \(I_A \) are consecutive intervals,
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{l_C} + 4\chi_{l_B} + 2\chi_{l_A} \).

where \(l_C, l_B \) and \(l_A \) are consecutive intervals,

whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C, I_B \) and \(I_A \) are consecutive intervals,

whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),
where \(A, B \) and \(C \) are disjoint subsets of \(Q \),
then \(f^* = 9\chi_{l_C} + 4\chi_{l_B} + 2\chi_{l_A} \).

where \(l_C, l_B \) and \(l_A \) are consecutive intervals,
whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C, \)

where \(A, B \) and \(C \) are disjoint subsets of \(Q, \)

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A}. \)

where \(I_C, I_B \) and \(I_A \) are consecutive intervals,

whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A). \)
If $f = 2\chi_A + 4\chi_B + 9\chi_C$, where A, B and C are disjoint subsets of Q, then $f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A}$, where I_C, I_B and I_A are consecutive intervals, whose lengths equal $\lambda(C)$, $\lambda(B)$ and $\lambda(A)$.
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C, I_B \) and \(I_A \) are consecutive intervals,

whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A) \).
If $f = 2 \chi_A + 4 \chi_B + 9 \chi_C$,

where A, B and C are disjoint subsets of Q,

then $f^* = 9 \chi_{I_C} + 4 \chi_{I_B} + 2 \chi_{I_A}$.

where I_C, I_B and I_A are consecutive intervals,

whose lengths equal $\lambda(C)$, $\lambda(B)$ and $\lambda(A)$.
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{l_C} + 4\chi_{l_B} + 2\chi_{l_A} \).

where \(l_C, l_B \) and \(l_A \) are consecutive intervals,

whose lengths equal \(\lambda(C) \), \(\lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C, I_B \) and \(I_A \) are consecutive intervals,

whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A \), \(B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C \), \(I_B \) and \(I_A \) are consecutive intervals,

whose lengths equal \(\lambda(C) \), \(\lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A, B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C, I_B \) and \(I_A \) are consecutive intervals,
whose lengths equal \(\lambda(C), \lambda(B) \) and \(\lambda(A) \).
If \(f = 2\chi_A + 4\chi_B + 9\chi_C \),

where \(A \), \(B \) and \(C \) are disjoint subsets of \(Q \),

then \(f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A} \).

where \(I_C \), \(I_B \) and \(I_A \) are consecutive intervals,
whose lengths equal \(\lambda(C) \), \(\lambda(B) \) and \(\lambda(A) \).
If $f = 2\chi_A + 4\chi_B + 9\chi_C$,

where A, B and C are disjoint subsets of Q,

then $f^* = 9\chi_{I_C} + 4\chi_{I_B} + 2\chi_{I_A}$.

where I_C, I_B and I_A are consecutive intervals,

whose lengths equal $\lambda(C)$, $\lambda(B)$ and $\lambda(A)$.