B ≡ C (mod p^g)

C is the code of B

(4) Compute $osc \geq n$ such that

(3) For all $os \geq (p-1)(g-1)$ such that

(2) Choose d such that $(d, (p-1)(g-1)) = 1$

(1) Given $B > 0$ choose primes $p \neq q$ such that

Remark:

For all $p \neq q$
\[c d \equiv 1 \pmod{n} \]
\[\frac{c d}{p} \equiv \frac{1}{p} \pmod{n} \]

Proof:

The arguments is recovered.

\[\frac{1}{p} \equiv \frac{1}{c d} \pmod{n} \]

The argument then:

\[\frac{1}{c d} \equiv \frac{1}{1} \pmod{n} \]

Thus, we consider:

\[\frac{1}{c d} \equiv \frac{1}{1} \pmod{n} \]

Compute \(c d \pmod{n} \) for such that

1. Compose \(c d \pmod{n} \)

Decoding: