Extension fields I

Sergei Silvestrov

Spring term 2011, Lecture 12

Abstract

Contents of the lecture.

Introduction to extension fields.

 Vector spaces.

Extension fields and Kronecker’s theorem

Definition 1. If E is a field containing F as a subfield, then E is called a extension field of F.

Theorem 1 (Kronecker). If F is a field and $f(x) \in F[x]$ is a nonconstant polynomial, then there exist an extension field E of F and an $\alpha \in E$ with $f(\alpha) = 0$.

Proof. If the degree of f is 1, then $f(x)$ is linear and we can choose $E = F$. If the degree of f is greater than 1, write $f(x) = p(x)g(x)$, where $p(x)$ is irreducible. The quotient ring $E = F[x]/\langle p(x) \rangle$ is a field. The natural map $\varphi(a) : E \mapsto F$ defined by $\varphi(a) = a + \langle p(x) \rangle$, is an isomorphism from F to the subfield $F' = \{a + \langle p(x) \rangle : a \in F \}$ of E.

Put $\alpha = x + \langle p(x) \rangle \in E$. Let $p(x) = a_0 + a_1x + \cdots + a_{d-1}x^{d-1} + x^d$, where $a_i \in F$ for all i. In $E = F[x]/\langle p(x) \rangle$, we have

$$p(\alpha) = (a_0 + \langle p(x) \rangle) + (a_1 + \langle p(x) \rangle)\alpha + \cdots + (1 + \langle p(x) \rangle)\alpha^d$$

$$= (a_0 + \langle p(x) \rangle) + (a_1 + \langle p(x) \rangle)(x + \langle p(x) \rangle) + \cdots + (1 + \langle p(x) \rangle)(x + \langle p(x) \rangle)^d$$

$$= (a_0 + \langle p(x) \rangle) + (a_1x + \langle p(x) \rangle) + \cdots + (1x^d + \langle p(x) \rangle)$$

$$= a_0 + a_1x + \cdots + x^d + \langle p(x) \rangle$$

$$= p(x) + \langle p(x) \rangle = \langle p(x) \rangle,$$

because $p(x) \in \langle p(x) \rangle$. But $\langle p(x) \rangle = 0 + \langle p(x) \rangle$ is the zero element of $E = F[x]/\langle p(x) \rangle$, and so α is a root of $p(x)$. □
Example 1. The polynomial \(x^2 + 1 \in \mathbb{R}[x] \) is irreducible, and so \(K = \mathbb{R}[x]/\langle x^2 + 1 \rangle \) is a field extension. If \(\alpha \) is a root of \(x^2 + 1 \), then \(\alpha^2 = -1 \); moreover, every element of \(K \) has a unique expression of the form \(a + b\alpha \), where \(a, b \in \mathbb{R} \). Clearly, this is another construction of \(\mathbb{C} \).

Algebraic and transcendental elements

Definition 2. Let \(E \) be an extension field of \(F \). An element \(\alpha \in E \) is **algebraic** over \(F \) if there is some nonzero polynomial \(f(x) \in F[x] \) having \(\alpha \) as a root; otherwise, \(\alpha \) is **transcendental** over \(F \).

Example 2. \(i \in \mathbb{C} \) is algebraic over \(\mathbb{Q} \) and over \(\mathbb{R} \). It is a nontrivial fact that \(\pi, e \in \mathbb{R} \) are transcendental over \(\mathbb{Q} \).

Theorem 2. Let \(E \) be an extension field of \(F \). An element \(\alpha \in E \) is transcendental over \(F \) if and only if the evaluation homomorphism \(\varphi_\alpha : F[x] \to E \) is a one-to-one map.

Proof.

1. The element \(\alpha \) is transcendental over \(F \) \iff
2. \(f(\alpha) \neq 0 \) for all nonzero \(f(x) \in F[x] \) \iff
3. \(\varphi_\alpha(f(x)) \neq 0 \) for all nonzero \(f(x) \in F[x] \) \iff
4. \(\ker(\varphi_\alpha) = \{0\} \) \iff
5. \(\varphi_\alpha \) is one-to-one.

\[\square \]

The irreducible polynomial for \(\alpha \) over \(F \)

Theorem 3. Let \(E \) be an extension field of \(F \) and let \(\alpha \in E \) be algebraic over \(F \). There exist a unique irreducible monic polynomial \(f(x) \in F[x] \) such that

1. \(f(\alpha) = 0 \).
2. If \(g(x) \in F[x] \) and \(g(\alpha) = 0 \), then \(f \) divides \(g \).

Definition 3. Let \(E \) be an extension field of \(F \) and let \(\alpha \in E \) be algebraic over \(F \). The polynomial described in Theorem 3 is called the **irreducible polynomial for \(\alpha \) over \(F \)** and is denoted by \(\text{irr}(\alpha, F) \). The degree of \(\text{irr}(\alpha, F) \) is the **degree of \(\alpha \) over \(F \)**, denoted by \(\deg(\alpha, F) \).
Example 3. \(\text{irr} (\sqrt{2}, \mathbb{Q}) = x^2 - 2 \) and \(\deg(\sqrt{2}, \mathbb{Q}) = 2 \). Similarly, \(\text{irr} (\sqrt{2}, \mathbb{Q}) = x^n - 2 \) and \(\deg(\sqrt{2}, \mathbb{Q}) = n \) for \(n \geq 2 \). Over \(\mathbb{R} \), the element \(\sqrt{2} \) is of degree 1, with minimal polynomial \(\text{irr}(\sqrt{2}, \mathbb{R}) = x - \sqrt{2} \).

Simple extensions

Definition 4. Let \(E \) be an extension field of \(F \) and let \(\alpha \in E \). The smallest subfield of \(E \) containing both \(F \) and \(\alpha \) is called the simple extension of \(F \) and is denoted by \(F(\alpha) \).

If \(\alpha \) is algebraic over \(F \), then \(F(\alpha) = \varphi_\alpha[F[x]] \). If \(\alpha \) is transcendental over \(F \), then \(F(\alpha) \) is the quotient field of \(\varphi_\alpha[F[x]] \).

Theorem 4. Let \(E \) be an extension field of \(F \) and let \(\alpha \in E \) be algebraic over \(F \). Let \(n = \deg(\alpha, F) \). Then

\[
F(\alpha) = \{ a_0 + \cdots + a_{n-1} \alpha^{n-1} : a_0, \ldots, a_{n-1} \in F \}.
\]

Example 4. Let \(F = \mathbb{Z}_2 \), let \(p(x) = x^2 + x + 1 \). There exist a simple extension field \(\mathbb{Z}_2(\alpha) \) of \(\mathbb{Z}_2 \) containing a zero \(\alpha \) of \(p(x) \). Then

\[
\mathbb{Z}_2(\alpha) = \{ a_0 + a_1 \alpha : a_0, a_1 \in \mathbb{Z}_2 \}
\]

which is a new field containing 4 elements.

Vector spaces

Definition 5. Let \(F \) be a field. A vector space over \(F \) is an additive abelian group \(V \) equipped with a scalar multiplication of each element \(\alpha \in V \) by each element \(a \in F \) on the left, such that for all \(a, b \in F \) and \(\alpha, \beta \in V \) the following is true

\[
\begin{align*}
\gamma_1: \quad & \alpha a \in V. \\
\gamma_2: \quad & a(b\alpha) = (ab)\alpha. \\
\gamma_3: \quad & (a + b)\alpha = a\alpha + b\alpha. \\
\gamma_4: \quad & a(\alpha + \beta) = a\alpha + a\beta. \\
\gamma_5: \quad & 1\alpha = \alpha.
\end{align*}
\]

The elements of \(V \) are vectors and the elements of \(F \) are scalars.
Examples of vector spaces

Example 5. The Cartesian product F^n is a vector space over F with scalar multiplication
\[a(a_1, \ldots, a_n) = (aa_1, \ldots, aa_n). \]

Example 6. Let E be an extension field of F. Then E is a vector space over F. In particular, \mathbb{R} is a \mathbb{Q}-vector space, \mathbb{C} is a \mathbb{R}-vector space, $\mathbb{Q}(\sqrt{2})$ is a \mathbb{Q}-vector space.

Linear independence

Definition 6. Let V be a vector space, and let $S \subseteq V$. The vectors of S span or generate V if for any $\beta \in V$ there exist $n \in \mathbb{Z}^+$, scalars $a_i \in F$ and vectors $\alpha_i \in S$ for $1 \leq i \leq n$ such that
\[\beta = \sum_{i=1}^{n} a_i \alpha_i. \]
In other words, β is a linear combination of the a_i.

Definition 7. A vector space V is finite-dimensional if there is a finite subset $S \subseteq V$ whose vectors span V.

Example 7. The vectors $(1,0,\ldots,0)$, $(0,1,0,\ldots,0)$, \ldots, $(0,0,\ldots,1)$ span the finite-dimensional space F^n.

Example 8. Let E be an extension field of F and let $\alpha \in E$ be algebraic over F. Let $n = \deg(\alpha, F)$. Then the elements
\[1, \alpha, \ldots, \alpha^{n-1} \]
span $F(\alpha)$.

Definition 8. Let V be a vector space, and let $S \subseteq V$. The vectors in S are linearly independent, if for any $n \in \mathbb{Z}^+$, scalars $a_i \in F$ and distinct vectors $\alpha_i \in S$ for $1 \leq i \leq n$ we have
\[\sum_{i=1}^{n} a_i \alpha_i = 0 \Leftrightarrow a_1 = a_2 = \cdots = a_n = 0. \]

Example 9. The vectors defined in Examples 5 and 6, are linearly independent.
Definition 9. Let V be a vector space over a field F, and let $B \subset V$. The vectors in B form a basis for V over F if they span V and are linearly independent.

Example 10. The vectors defined in Examples 5 and 6, form a basis.

Dimension

Theorem 5. Every finite-dimensional vector space has a basis. Any two bases of a finite-dimensional vector space have the same number of elements.

This theorem remains true without the assumption that the vector space is finite dimensional.

Definition 10. If V is a finite-dimensional vector space over F, then the number of elements in a basis is called the dimension of V over F.

Example 11. F^n is n-dimensional vector space over F.

Example 12. Let E be an extension field of F and let $\alpha \in E$ be algebraic over F. Then $F(\alpha)$ is $\deg(\alpha, F)$-dimensional space over F.