Prime and maximal ideals

Sergei Silvestrov

Spring term 2011, Lecture 7

Contents of the lecture

Prime and maximal ideals.
Maximal ideals

Definition 1. (Sec 6.3, p. 157)
An ideal M in a ring R is said to be maximal if $M \neq R$ and for every ideal N such that $M \subseteq N \subseteq R$, either $N = M$ or $N = R$.

Example 1. The ideal $3\mathbb{Z}$ is maximal in \mathbb{Z}, but the ideal $4\mathbb{Z}$ is not since $4\mathbb{Z} \subsetneq 2\mathbb{Z} \subsetneq \mathbb{Z}$.

Example 2. (p. 156)
The quotient ring $\mathbb{Z}[x]/(x)$ is not a field. Furthermore, the ideal I of polynomials with even constant terms lies strictly between the ideal (x) and $\mathbb{Z}[x]$, that is,

$$(x) \subsetneq I \subsetneq \mathbb{Z}[x]$$

Maximal ideals may be characterised in terms of their factor rings.

Theorem 1. (Th 6.15, Sec 6.3, p. 156)
Let M be an ideal in a commutative ring R with unity $1 \neq 0$.
Then M is maximal if and only if the factor ring R/M is a field.

Corollary 1. The following conditions on a commutative ring R with unity $1 \neq 0$ are equivalent.

1. R is a field.
2. R has no proper nontrivial ideals.
3. 0 is a maximal ideal in R.

Proof. R is isomorphic to $R/0$ and is a field if and only if 0 is maximal. But clearly 0 is maximal if and only if R has no proper nontrivial ideals. \qed
Prime ideals

Definition 2. (Sec 6.3, p 154)
An ideal $P \neq R$ is said to be **prime** if for all $a, b \in R$ $ab \in P$ implies $a \in P$ or $b \in P$.

Example 3. The zero ideal in any integral domain is prime since $ab = 0$ if and only if $a = 0$ or $b = 0$.

Example 4. If p is a prime integer, then the ideal $p\mathbb{Z}$ is prime since $ab \in p\mathbb{Z}$ means that p divides ab, then p divides a or p divides b, which means that $a \in p\mathbb{Z}$ or $b \in p\mathbb{Z}$.

Theorem 2. (Th 6.14, Sec 6.3, p 155)
In a commutative ring R with unity $1 \neq 0$ an ideal P is prime if and only if the factor ring R/P is an integral domain.

Proof. R/P is a commutative ring with unity $1 + P$ and zero element $0 + P = P$ by Theorem 2.7.8.

If P is prime, then $1 + P \neq P$ since $P \neq R$. Furthermore, R/P has no zero divisors since

$$(a + P)(b + P) = P \Rightarrow ab + P = P$$

$$\Rightarrow ab \in P$$

$$\Rightarrow a \in P \text{ or } b \in P$$

$$\Rightarrow a + P = P \text{ or } b + P = P.$$

Therefore, R/P is an integral domain.

Conversely, if R/P is an integral domain, then $1 + P \neq 0 + P$, whence $1 \notin P$. Therefore, $P \neq R$. Since R/P has no zero divisors,

$$ab \in P \Rightarrow ab + P = P$$

$$\Rightarrow (a + P)(b + P) = P$$

$$\Rightarrow a + P = P \text{ or } b + P = P$$

$$\Rightarrow a \in P \text{ or } b \in P.$$

Therefore, P is prime.

Corollary 2. (Th 6.16, Sec 6.3, p 157) If R is a commutative ring with unity $1 \neq 0$, then every maximal ideal M in R is prime.

Proof. By Theorem 1, R/M is a field, hence an integral domain. By Theorem 2, M is prime.

– Typeset by Foil\TeX –
Theorem 3. If F is a field, then either it is of prime characteristic p and contains a subfield isomorphic to \mathbb{Z}_p or it is of characteristic 0 and contains a subfield isomorphic to \mathbb{Q}.

Proof. Consider the ring homomorphism $\varphi : \mathbb{Z} \to F$ defined by $\varphi(n) = n \cdot 1$. The kernel $\ker(\varphi)$ must be an ideal in \mathbb{Z}. All ideals in \mathbb{Z} are of the form $m\mathbb{Z}$ for some $m \in \mathbb{Z}$.

If $m = 0$, then φ is one-to-one, and so there is an isomorphic copy of \mathbb{Z} that is a subring of F. Its field of quotients is \mathbb{Q} and is a minimal field containing the above mentioned subring. So F must contain a subfield isomorphic to \mathbb{Q} and has characteristic 0.

If $m \neq 0$, the First Isomorphism Theorem gives $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ is isomorphic to $\varphi[\mathbb{Z}] \subseteq F$. Since F is a field, $\varphi[\mathbb{Z}]$ is a domain, and so m is a prime p. Now

$$\varphi[\mathbb{Z}] = \{0, 1, 2 \cdot 1, \ldots, (p - 1) \cdot 1\}$$

is a subfield of F isomorphic to \mathbb{Z}_p, and the characteristic of F is p.

Definition 3. The fields \mathbb{Q} and \mathbb{Z}_p are prime fields.
Principal ideals

Definition 4. Let R be a commutative ring with unity $1 \neq 0$. The ideal $\{ ra : r \in R \}$ is called the **principal ideal generated by** $a \in R$ and is denoted by $\langle a \rangle$. An ideal N is called **principal** if there exist $a \in R$ such that $N = \langle a \rangle$.

Theorem 4. If F is a field, then every ideal in $F[x]$ is principal.

Theorem 5. The maximal ideals in $F[x]$ are the ideals $\langle f(x) \rangle$ generated by irreducible polynomials $f(x)$.
Our basic goal and outline of its achieving

We would like to prove the following: let F be a field and let $f(x)$ be a nonconstant polynomial in $F[x]$. There exist a field E containing both F and a zero α of $f(x)$.

Sketch of proof.

1. Choose an irreducible factor $p(x)$ of $f(x)$ in $F[x]$ (nothing to do if $p(x)$ does not exist).
2. By Theorem 5, the ideal $\langle p(x) \rangle$ is maximal. By Theorem 1, the factor ring $E = F[x]/\langle p(x) \rangle$ is a field.
3. Find an isomorphism between F and a subfield in E.
4. Put $\alpha = x + \langle p(x) \rangle \in E$. Prove that $\Phi_\alpha(f(x)) = 0$. That is, α is a zero of $f(x)$ in E.

\square