1) **Räkna ut gränsvärdet direkt** **eller**
2) **Gör koordinatbyte (polära)** **eller**
3) **Visa att gränsvärdet finns inte!**
 - Hitta två olika riktningar som ge olika gränsvärdena.

Korthet: För att vara kontinuerlig på ett punkt \((x_0, y_0)\)

1) **Funktion måste finnas**
2) **Gränsvärdet måste finnas**
3) **Funktion måste vara lika med gränsvärdet**

Definition till gränsvärdet för endimensionell rum från Wikipedia:

Gränsvärdet av \(f\), då \(x\) närmar sig \(a\), är \(A\) och skrivs

\[
\lim_{x \to a} f(x) = A
\]

om villkoret

För varje reellt \(\varepsilon > 0\), existerar ett reellt \(\delta > 0\) sådant att för alla reella \(x\),

\[0 < |x - a| < \delta \quad \Rightarrow \quad |f(x) - A| < \varepsilon\]

är uppfyllt. Formellt kan villkoret skrivas

\[
(\forall \varepsilon > 0, \exists \delta > 0) \quad 0 < |x - a| < \delta \quad \Rightarrow \quad |f(x) - A| < \varepsilon
\]

Gränsvärdet beror inte av värdet av \(f(a)\), eller ens av att \(a\) tillhör \(f\)'s definitionsmängd.

Det betyder att gränsvärdet måste vara samma om vi närmar \(x\) \(a\) från vänster och från höger sidaan.

\[x \to a^- \quad a^+ \to x\]

Annars gränsvärdet finns inte!

Samma idee funkar också på flera dimensioner,

Till ex.

\[
\lim_{x \to 0} \frac{x+3}{x^2+y^2}
\]
DIMENSIONER,
TILL EX. $\lim_{(x,y) \to (1,1)} \frac{x+3}{x^2+y^2}$

MEN NU GRÅNSVÄRREN MÅSTE
vara samma och vi närma till punkten (1,1)
från alla möjliga riktningar i plan.
Annars grånsvärdet finns inte.
(Se också definition 3.1 sid. 81)

ANM. ALLA "NORMALA" FUNKTIONER ÄR KONTINUERLIGA
och därför grånsvärdet finns
där de är "förkliga" (t.ex. nämnare = 0)

EXEMPEL

$\lim_{(x,y) \to (1,1)} \frac{x+3}{x^2+y^2} = \frac{1+3}{1^2+1^2} = 2$

BERÄKNA $\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2+y^2}$

Grånsvärdet ovan räknas ut att vara "0"
det betyder vi måsta hitta en annan väg för att lösa problem

FÖRSLAG TILL LÖSNING FÖR ATT HITTA GRÅNSVÄRDERNA

1) RÄKNA UT GRÅNSVÄRREN DIREKT ELLER
2) GÖRA KOORDINATBYTE (POLÄRA CYLINDRISKA ELLER
3) VISA ATT GRÅNSVÄRREN FINNS INTE!
 Hitta två olika riktningar som ger olika grånsvärdena.
VI FÖRTSAT MEN LÖSNING TILL PROBLEMET OVAN MED HJÄLP AV POLÄRA KOORD. \[\begin{align*}
\lim_{r \to 0} \frac{\cos \theta \sin^2 \theta}{r^2 \cos^2 \theta + 2r \sin^2 \theta} &= \lim_{r \to 0} \frac{\cos \theta \sin^2 \theta}{r^2 (\cos^2 \theta + 2 \sin^2 \theta)} = 1 \\
\lim_{r \to 0} \cos \theta \sin^2 \theta &\leq \lim_{r \to 0} r \cdot |1| = 0 \\
\text{Alltså gränsvärden främst all möjliga riktningarna} \\
till (0,0) \text{ finns och det är 0.}
\end{align*} \]

2) **KONTINUITET**

Definition 3.2 i bok är samma som i envariable fallet.

Korthet: För att vara kontinuerlig på en punkt \((x_0, y_0)\)

1) **Funktion måste finnas:** \(f(x_0, y_0)\) finnas

2) **Gränsvärden måste finnas:** \(\lim_{(x, y) \to (x_0, y_0)} f(x, y) = \text{finns}\)

3) **Funktion måste vara lika med gränsvärden**

\[\lim_{(x, y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0) \]

Exempel kan följande funktion utvida så att det blir kontinuerlig i hela \(\mathbb{R}^2\)?

\[f(x, y) = \frac{x^2 y}{(x^2 + y)^2}, \quad (x, y) \neq (0, 0) \]

Lösning:

Vi räknar gränsvärdena först. \(\lim_{(x, y) \to (0, 0)} \frac{x^2 y}{(x^2 + y)^2} = 0\)
VI RÄKNA GRÄNSVÄRDEN FÖRST, \(\lim_{(x,y) \to (0,0)} \frac{xy}{x^2+y^2} = 0 \)

SO VI MÅSTE Hitta EN ANNAN VÄG...

VI TRO ATT GRÄNSVÄRDEN FINNS INTE.

VI FÖRSÖKER MOT OLIKA RIKTNINGAR
FÖR ATT VISA AT GRÄNSVÄRDEN
FINNS INTE.

\text{t.ex.: LÅT } y = x

\[\lim_{(x,y) \to (0,0)} \frac{x^2y}{(x^2+y^2)^2} = \lim_{x \to 0,0} \frac{x^3}{(x^2+x^2)^2} = \lim_{x \to 0,0} \frac{x}{x^2} = \frac{0}{1} = 0 \]

NU VI PROVA MED RIKTNING \(y = x^2 \)

\[\lim_{x \to 0,0} \frac{x^2y}{(x^2+y^2)^2} = \lim_{x \to 0,0} \frac{x^4}{4x^2} = \frac{1}{4} \]

MEN \(\frac{1}{4} \neq 0 \)

\[\text{GRÄNSVÄRDEN FINNS INTE!} \]

\[\text{ANM. VI KAN BERÄKNA GRÄNSVÄRDEN FÖR} \]
\[\text{VEKTORVÄRDA FUNKTIONER KOMPONENTVIS} \]

\[\text{EXEMPEL} \]
\[\text{BERÄKNA GRÄNSVÄRDEN FÖR FÖLJANDE} \]
\[\text{FUNKTION NÄR } (x,y) \to (0,0) \]
\[f(x,y) = \left(\frac{xy^2}{x^2+y^2} \right) \frac{\sin (x^2+y^2)}{x^2+y^2} \]

\[\text{LÖSN: } \lim_{(x,y) \to (0,0)} \left(\frac{xy^2}{x^2+y^2} \right) \frac{\sin (x^2+y^2)}{x^2+y^2} = \]

\[\text{DVNNG} \]

\[\sqrt{2} \]

\[\sqrt{x^2+y^2} \]

\[\sin (x^2+y^2) \]
\[
\lim_{x,y \to 0,0} \left(\frac{xy^2}{x^2 + y^2}, \lim_{x,y \to 0,0} \frac{\sin(x^2 + y^2)}{x^2 + y^2} \right) = (0,1)
\]

ANM. FUNKTION F OVA ÖR EN FUNKTION \(f : \mathbb{R}^2 \to \mathbb{R}^2 \)