Topics for today:

- Short Algebra Review
- Sources of error:
 - Condition Number & Swamping
- Partial Pivoting

Sources of Error.

- **Ill-conditioning** = sensitivity of solution to the input data (not much we can do about it)
- **Swamping** = arithmetic errors due to large numerical discrepancy in parameters (fixable)

Ill-conditioning & Condition Number

First we need to define the concept of norm of a vector and norm of a matrix. As usual we wish to solve the problem \(Ax = B \). Assume that \(x^* \) is an approximate solution to that problem.

Definition. *Infinity vector norm* (maximum vector norm):

\[
\| x \|_\infty = \max_i |x_i|, \quad i = 1..n
\]

Definition. *Infinity matrix norm* (maximum matrix norm):

\[
\| A \|_\infty = \max \text{ absolute row sum}
\]

Definition. *Residual*:

\[
r = B - A x^*
\]

Definition. *Backward Error*:

\[
\| r \|_\infty = \| B - A x^* \|_\infty
\]

Definition. *Forward Error*:

\[
\| x - x^* \|_\infty
\]

Definition. *Condition Number*: For a square matrix \(A \), \(\text{cond}(A) \) is the maximum possible error magnification factor for solving \(Ax = B \), over all possible right hand sides \(B \) (or alternatively the maximum ratio of the relative error in \(x \) over the relative error in \(B \)).

\[
\text{cond}(A) = \| A \| \cdot \| A^{-1} \|
\]

Interpretation of Condition Number:

The larger the condition number is then the hardest will be to solve the system \(Ax = B \), accurately.

For example if \(\text{cond}(A) = 10^k \) then we should be prepared to lose \(k \) digits of accuracy in computing the solution \(x \) when solving \(Ax = b \).

Assuming for instance double precision in the computer we may have up to 16 digits accuracy for a given number. In the case that \(\text{cond}(A) = 10^k \) then the accuracy will be reduced to \(16-k \) digits when solving \(Ax = b \).

Example. Calculate the condition number for the following matrix \(A \):

\[
A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \text{, First we calculate } A^{-1} = \frac{1}{2-1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} =
\]

Jan. 25 2019
Alexandros Sopasakis
An example: solve $Ax = B$ where

\[A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}, \quad \text{First we calculate } A^{-1} = \frac{1}{2-1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}. \]

Now calculate $\|A\|_\infty = 3$

and $\|A^{-1}\|_\infty = 3$, therefore $\text{cond}(A) = \|A\|\|A^{-1}\| = 9$

\[
A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 4 \end{bmatrix}
\]

METHOD 1

\[
\begin{bmatrix} 10^{-20} & 1 \\ 1 & 2 \end{bmatrix} \rightarrow [\begin{bmatrix} 10^{-20} & 1 \\ 0 & 4 \end{bmatrix}]
\]

\[
\begin{bmatrix} 10^{-20} & 1 \\ 0 & 4 \end{bmatrix} \rightarrow [\begin{bmatrix} 10^{-20} & 1 \\ 0 & 4 \end{bmatrix}]
\]

Solving the 2nd equation gives $x_2 = 1$ and then $x_1 = 0$

TRUE SOLUTION IS $\begin{bmatrix} x_1 = 2 \\ x_2 = 1 \end{bmatrix}$

METHOD 2

Start by changing the order

\[
\begin{bmatrix} 10^{-20} & 1 \\ 1 & 2 \end{bmatrix} \rightarrow [\begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}]
\]

\[
\begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix} \rightarrow [\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}]
\]

Solving gives $x_1 = 2$, $x_2 = 1$

Clearly Method 2 is the correct method to use. The reason it worked was that initial operation where we swap row 1 with row 2. It allowed us to avoid subtracting numbers which are essentially equal.
Thus to avoid swamping problems we use **pivoting**
(that operation in the beginning in method 2)!