\[
\int_a^b f(x) \, dx = \sum_{k=0}^{N} \omega_k f(x_k)
\]

IDEA: APPROXIMATE

\[\sum_{k=0}^{N} \omega_k f(x_k)\]

- Newton-Cotes formulas
- Composite Newton-Cotes
- Romberg Integration
- Adaptive quadrature
- Gaussian quadrature

\[\int_a^b f(x) \, dx\]

EXERCISE: APPLY TRAPEZOIDAL RULE IN ORDER TO APPROXIMATE THE AREA UNDER THE FUNCTION

\[f(x) = \sqrt{x}\] **BETWEEN** \[1 \leq x \leq 7\]

NOTE: EXACT AREA:

\[
\int_1^7 \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \bigg|_1^7 = \frac{2}{3} (\sqrt{7^3} - \sqrt{1^3})
\]

\[\approx 11.68\]

SOLUTION:

TRAPEZOID RULE:

\[
\int_0^b f(x) \, dx = \frac{h}{2} \left(f(x_0) + f(x) \right) - \frac{h^3}{12} f^{(3)}(c)
\]

\[
\int_0^3 \sqrt{x} \, dx = \frac{3}{2} \left(\sqrt{3^3} + \sqrt{1} \right) - \frac{3^3}{6} \left(-\frac{1}{4} \right) 3^{3/2}
\]

\[\approx 10.937 \pm 9\] **where 9 is max error when \(3=1\).**

EASILY THE ESTIMATE 10.9 IS WAY OFF FROM THE TRUE AREA OF 11.68

SIMPSON'S RULE

\[
\int_{x_0}^{x_1} f(x) \, dx = \frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x) \right] - \frac{h^5}{90} f^{(4)}(c)
\]

\[
\approx \frac{1}{2} \left[\frac{11}{15} \left(f(1) + 4f(3) + f(7) \right) - \frac{1}{2} \left(15 \cdot 3^{7/2} \right) \right]
\]

IN BLUE WE SEE THE

GREEN IS

TRAPEZOID APPROXIMATION

EXACT AREA

CLEARLY THE ESTIMATE 10.9 IS WAY OFF FROM THE TRUE AREA OF 11.68
\[
\int_1^2 \frac{x}{x^2 + 1} \, dx = \frac{3}{3} \left[\frac{1}{14} + \frac{9}{16} + \frac{7}{17} \right] - \frac{9}{10} \left(\frac{15.5 \text{ } 3/4}{16} \right)
\]

IN BLUE WE SEE THE SIMPSON'S APPROXIMATION (IT IS THROUGH THE PARABOLA)

\[
= \left[\frac{148 + 17}{17} \right] - \frac{3 \cdot 15.1}{10} = 11.64 - 2.
\]

\[\text{\textbf{SOME THEORETICAL RESULTS}}\]

\textbf{FIRST THE NAME: INTEGRATION FORMULA = QUADRATURE}

\textbf{NOTE: IF THE FORMULA INCLUDES END-PTS OF INTERVAL THEN IT IS CALLED A CLOSED NEWTON-COTES QUADRATURE, OTHERWISE IT IS AN OPEN NEWTON-COTES QUADRATURE.}

\textbf{NOTE: BOTH QUADRATURES PRESENTED ABOVE ARE CLOSED NEWTON-COTES FORMULAS}

\textbf{DEF: THE ALGEBRAIC DEGREE OF ACCURACY OF A QUADRATURE FORMULA IS GIVEN BY THE POWER OF THE POLYNOMIAL P_n(x) FOR WHICH THE QUADRATURE IS EXACT (EXACT = NO ERROR AT ALL). NOA = DEGREE OF PRECISION}

\textbf{EXAMPLE (EXACT) SUPPOSE f(x) = 3 - x on [1,2] USING, FOR INSTANCE, THE TRAPEZOIDAL RULE WE GET}

\[
\int_1^2 (3-x) \, dx = \frac{1}{2} \left[f(1) + f(2) \right] = \frac{1}{2} \left(2 + 1 \right) = \frac{3}{2}
\]

\textbf{NOTE THAT EXACT IS:}

\[
\int_1^2 (3-x) \, dx = \left(3x - \frac{x^2}{2} \right)_1^2 = 4 - 2.5 = 3/2
\]

\textbf{THUS THE QUADRATURE WAS EXACT FOR THIS f(x)!}

\textbf{NOTE: IF WE TRY A QUADRATIC FUNCTION THEN THE TRAPEZOIDAL RULE WILL NOT BE EXACT. SO ALGEBRAIC DEGREE OF ACCURACY = 1}

\textbf{QUESTION: WHAT IS ALGEBRAIC DEGREE OF ACCURACY FOR SIMPSON'S QUADRATURE FORMULA?}

\textbf{COMMONLY USED NEWTON-COTES QUADRATURES}

\textbf{MIDPOINT:}

\[
\int_a^b f(x) \, dx \approx \frac{b-a}{2} \left[f(x_0) + f(x_1) \right]
\]
Composite Quadratures

Composite Trapezoidal Rule:
(Thm) Suppose \(f \in C^2[a,b] \). Then the composite rule for \(n+1 \) points, \(a = x_0, x_1, \ldots, x_n = b \) is given by:

\[
\int_a^b f(x) \, dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] - \frac{(b-a) h^2}{12} f''(\xi)
\]

where \(h = \frac{b-a}{n} \), \(x_j = a + jh \) and \(\xi \in (a,b) \) as usual.

Composite Midpoint Rule:
(Thm) Suppose \(f \in C^2[a,b] \). Then the composite midpoint rule for \(n+1 \) points \(a = x_0, x_1, \ldots, x_n = b \) is given by:

\[
\int_a^b f(x) \, dx = 2h \sum_{j=0}^{n/2} f(x_{2j}) - \frac{(b-a) h^2}{6} f''(\xi)
\]

where \(h = \frac{b-a}{n+1} \), \(x_j = a + (j+1)h \) for \(j = 0, 1, \ldots, n \) and \(\xi \in (a,b) \).

Composite Simpson's Rule:
(Thm) Suppose \(f \in C^4[a,b] \). Then the composite Simpson's rule for \(n+1 \) points \(a = x_0, x_1, \ldots, x_n = b \) is given by:

\[
\int_a^b f(x) \, dx = \frac{h}{3} \left[f(a) + 4 \sum_{j=1}^{n/2} f(x_{2j}) + f(b) \right] - \frac{h^5}{90} f^{(4)}(\xi)
\]
(THM) Suppose \(f \in C^2([a,b]) \). Then the composite Simpson's rule for \(n+1 \) points \(a = x_0 < x_1 < \ldots < x_{2m} = b \) is given by

\[
\int_a^b f(x) \, dx \approx \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{2m-1} f(x_{2j}) + 4 \sum_{j=0}^{m-1} f(x_{2j+1}) + f(b) \right] = \frac{(b-a)h^4}{180} f^{(4)}(\xi)
\]

where \(h = \frac{b-a}{2m} \), \(x_j = a + jh \) and \(\xi \in (a,b) \) as usual.

Exercise: Find the area under the curve \(f(x) = \cos(x) \) between 0 and \(\pi/2 \) using the composite midpoint rule with an error not to exceed .001.

The real question here is how many points \(n \) should we take so that the error is less than .001.

Note that the error for mid-point rule is

\[
|\text{error}| = \left| \left(\frac{x_n - x_0}{c} \right) h^2 f''(\xi) \right|
\]

where \(h = \frac{x_n - x_0}{n+2} = \frac{\pi/2 - 0}{n+2} \) and \(|f''(\xi)| = |\cos(\xi)| \leq 1 \)

Thus \(|\text{error}| \leq \frac{n^2}{6} \left(\frac{\pi/2}{n+2} \right)^2 \cdot 1 \leq .001 \)

Solving this gives \(n > \sqrt{\frac{1}{.001} \cdot \frac{\pi^3}{48}} \approx 23.41 \)

So we must choose 24 points.

Check: Using the 24 equidistant points in \([0, \pi/2]\)

we get

\[
\int_0^{\pi/2} \cos(x) \, dx \approx 2 \left(\frac{\pi/2}{24} \right) \sum_{j=0}^{11} \cos(j \pi/12) + \frac{x}{\pi} \left[\cos(x_0) + \cos(x_2) + \ldots + \cos(x_{22}) + \cos(x_{24}) \right]
\]

\[= 1.0006 \]

Note: Exact value is \(\int_0^{\pi/2} \cos(x) \, dx = 1 \)

Actual error: \(|1 - 1.0006| = .0006 \) as we wished.

If we had chosen \(n = 23 \) then the quadrature estimate would be .99868 with an actual error of .002 (greater than what we wished).