Today.
- More examples with Deflation
 - (Review of) Complex Analysis
 - Root of unity
 - DFT (Discrete Fourier Transform)

Review of Deflation.

Thin let \(A \) be an \(n \times n \) matrix with eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) and associated eigenvectors \(v_1, v_2, \ldots, v_n \) and let \(x \) be any \(n \)-vector for which \(x^T v_i = 1 \). Then the matrix \(B = A - \lambda_i v_i x^T \) has eigenvalues \(0, \lambda_2, \lambda_3, \ldots, \lambda_n \) with associated eigenvectors \(v_1, v_2, v_3, \ldots, v_n \)

\[
 x = \frac{1}{\lambda_1 v_1, k} \begin{pmatrix} a_{x1} \\ a_{x2} \\ \vdots \\ a_{xn} \end{pmatrix}
\]

A simplified version of this theorem is provided below:
Method of Deflation

1) Find \(v_1, \lambda_1 \) by Power Method

Now deflate \(A \): create new matrix \(B \) which does not have \(\lambda_1 \) as a dominant eigenvalue.

2) Deflation \[B = A - \frac{1}{v_{1k}} v_1 A_k \]

where \(v_{1k} = k^{th} \) non-zero element of \(v_1 \) and \(A_k = k^{th} \) row of \(A \).

Note: new matrix \(B \) will have eigenvalue \(0, \lambda_2, \lambda_3, \ldots \lambda_n \)

but different eigenvectors.

Example. \(A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \) has \(\lambda_1 = 3 \) and \(\lambda_2 = 2 \)

\(v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)

Find \(B \) and its dominant eigenvalue.

Solution: Let \(v_{1k} = v_{11} = 1 \)

So \[B = A - \frac{1}{v_{11}} v_1 A_1 \]

\[= \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} - \frac{1}{1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \]

\[= \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \]
Using Power Method we easily find now that B has dominant eigenvalue
\(\lambda = 2 \) which was the 2nd largest
eigenvalue of A.

Fourier Transforms

The Discrete Fourier Transform (DFT) of \(x = (x_0, \ldots, x_{n-1}) \) is

\[
-\frac{i 2\pi n}{n} x_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j e^{i j \omega k}
\]

where \(w = e^{i \frac{2\pi}{n}} \).

We first need a short review of complex arithmetic

Short Review on Complex Numbers

- Cartesian representation
- Polar representation
- Complex conjugate
- Euler formula
- Roots of unity.

\[\text{Def. } i = \sqrt{-1} \text{ and } z = a + ib \text{ is a complex} \]
number.

We usually visualize complex numbers as 2-dimensional vectors. We let the x-axis represent the real part of z and the y-axis the imaginary part of that complex number.

Example Plot the following numbers:

$z_1 = 2 + 2i$

$z_2 = 3 - i$

$z_3 = -3 + 3i$

$z_4 = i$

$z = x + iy$ $i = r e^{i\theta}$

Polar form:

In general we have:

$$z = x + iy = r e^{i\theta}$$

Polar form:

In general we have:

$$z = x + iy = r e^{i\theta}$$

the well-known Euler formula states:

$$e^{i\theta} = \cos \theta + i \sin \theta$$

So $z = \frac{\cos \theta + i \sin \theta}{r}$.

Example. Express $\sqrt{8} e^{\pi i/4}$ in the form $a + ib$.

Solution $\sqrt{8} e^{\pi i/4} = \sqrt{8} (\cos \pi + i \sin \pi) = 2 + 2i - z$.
Solution \[\sqrt{\text{Be}^\frac{\pi}{4}} = \sqrt{\text{B}} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 2 + 2i = z_1 \]

Def. Complex conjugate.

The complex conjugate of \(z = a + ib \) is \(\bar{z} = a - ib \)

Note: \(z \cdot \bar{z} = (a + ib)(a - ib) = a^2 + iab - iab - b^2z^2 = a^2 + b^2 = |z|^2 \)

In other words \(z \cdot \bar{z} \) is always a real number.

Example: Complex conjugate of \(3 - i \) is \(3 + i \).

Roots of Unity: \(z^n = 1 \)

So we need to find all \(z \) at distance 1 from origin s.t. \(z^n = 1 \).

Some examples:

\[z^2 = 1 \]
\[z^3 = 1 \]
\[z^4 = 1 \]

etc...

To solve the general equation \(z^n = 1 \) we use polar
general equation $z^n = 1$ we use polar coordinates again to express both z and 1.

Note: $z = e^{i\theta}$ and $1 = e^{i2\pi k}$ for $k \in \mathbb{Z}$

Thus $z^n = 1 \Rightarrow e^{in\theta} = e^{i2\pi k}$

Taking logarithms of both sides gives

$i\theta = i2\pi k$ or $\theta = \frac{2\pi k}{n}$ where $k = 0, 1, \ldots, n-1$

since if $\theta \geq n$ then we get similar angles.

So the roots of $z^n = 1$ are $z = e^{i\theta}$ with θ from above.