Lecture 1
Taylor theorem and Remainder, Errors, Bisection method

Alexandros Sopasakis
Mathematics, Lund University

Monday January 21, 2019
What is numerical analysis?

“Numerical analysis is about constructing and analyzing quantitative methods for the computation of solutions to mathematical problems.”
What can we solve?

A few problems can be solved exactly:

Linear systems

\[\begin{align*}
 x + y &= 1 \\
 x - y &= 0 \Rightarrow x = y = 1/2
\end{align*} \]

Integrals of polynomials

\[I = \int_0^1 x^3 \, dx \Rightarrow I = 1/4 \]

Most problems must be solved *approximately*.
Some problems cannot be solved exactly:

Non-linear equations

\[x^5 + 3x^4 - 7x^3 + x^2 + 2x - 2 = 0 \quad \Rightarrow \quad x = ? \]

Differential equations

\[\dot{x} = e^{t^2} \]

\[x(1) = 0 \quad \Rightarrow \quad x(t) = ? \]
Taylor’s Theorem

Theorem

Let f be a $k + 1$ times continuously differentiable function on the interval $[x, x_0]$ for given real numbers x and x_0. Then there exist a number ζ in the interval $[x, x_0]$ such that

$$f(x) = P_k(x) + R_k(x)$$

where the polynomial $P_k(x)$ of order k is given by,

$$f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

and the remainder (error term) is given by

$$R_k(x) = \frac{f^{(k+1)}(\zeta)}{(k + 1)!}(x - x_0)^{k+1}$$
Horner’s method

To evaluate $P_n(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_2x^2 + a_1x + a_0$ at $x = c$ we use nested multiplication:

$$(\cdots((a_nx + a_{n-1})x + a_{n-2})x + \cdots + a_2)x + a_1)x + a_0$$

Example: evaluate $p(t) = 1 + 4t - 5t^2 + 8t^3 - 2t^4$ at $t = 6$

$\Rightarrow p(t) = (((-2t + 8)t - 5)t + 4)t + 1$

1. $-2 \times 6 + 8 = -4$
2. $-4 \times 6 - 5 = -29$
3. $-29 \times 6 + 4 = -170$
4. $-170 \times 6 + 1 = -1019$
Error analysis

A “numerical solution” is different from a “mathematical solution.” Numerical solutions are approximations to the exact solution. How “good” a numerical solution is depends on how close it is to the exact solution and what is the error we are willing to tolerate. If \(\hat{p} \) is an approximation to \(p \),

- the absolute error is \(E_p = |p - \hat{p}| \)
- the relative error is \(R_p = \frac{|p - \hat{p}|}{|p|} \). It may be expressed as a percentage.
Types of errors

▶ **Truncation error**: occurs when an exact formula is replaced by another to make it easier (or possible) to solve numerically.

▶ **Round-off error**: occurs because computers cannot represent all real numbers exactly, as computer numbers have a limited number of digits.

▶ **Noise**: is the error in data. The numerical result must have the same number of significant digits as the original data *(same precision)*.
Notation and Accuracy

Floating point form of a number:

\[fl(p) = \pm \left(\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \cdots + \frac{d_k}{\beta^k} \right) \times \beta^E \]

\(d_i \) is an integer \((0 \leq d_i \leq \beta - 1) \), \(\beta \) is the base, \(k \) is the precision.

Normalized decimal form of a number:

\[p = \pm 0.d_1d_2d_3\cdots d_k d_{k+1}\cdots \times 10^n \]

Chopping off: \(fl_{chop}(p) = \pm 0.d_1d_2d_3\cdots d_k \times 10^n \)

Rounding off: \(fl_{round}(p) = \pm 0.d_1d_2d_3\cdots r_k \times 10^n \) where \(d_k d_{k+1}\cdots \) is rounded to the nearest integer.
Notation and Accuracy

Floating point form of a number:

\[fl(p) = \pm \left(\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \cdots + \frac{d_k}{\beta^k} \right) \times \beta^E \]

\(d_i \) is an integer \((0 \leq d_i \leq \beta - 1)\), \(\beta \) is the base, \(k \) is the precision. Normalized decimal form of a number:

\[p = \pm 0.d_1d_2d_3\cdots d_k d_{k+1} \cdots \times 10^n \]

Chopping off: \(fl_{chop}(p) = \pm 0.d_1d_2d_3\cdots d_k \times 10^n \)

Rounding off: \(fl_{round}(p) = \pm 0.d_1d_2d_3\cdots r_k \times 10^n \) where \(d_k d_{k+1} \cdots \) is rounded to the nearest integer.
Solving Linear and Nonlinear Equations: Bracketing methods

The annuity-due equation is

\[A = \frac{P}{I/12} \left((1 + \frac{I}{12})^N - 1 \right) \]

\(P \) monthly deposit, \(I \) annual interest, \(A \) amount after \(N \) deposits

You save Kr. 300 per month; what interest rate would allow you to have Kr. 50.000 after 12 years (\(N = 144 \))?

\[A(I) = \frac{300}{I/12} \left((1 + \frac{I}{12})^{144} - 1 \right) = 50.000 \]

\(A(0.04) = 55.331; \ A(0.03) = 51.922; \ A(0.02) = 48.779. \) Answer lies in [0.02, 0.03]. \(A(0.025) = 50.319, \) answer is in [0.020, 0.025]. After a few more tries, \(A(0.024) = 50.006, \) so you must find a bank that will give you a yearly interest rate of 2.4%
Bracketing Methods - The Bisection method

Problem: find a zero of a continuous function $f(x)$.
Bracketing Methods - The Bisection method

First bracket: $[1, 2]$, where $f(1) < 0$, $f(2) > 0$

Midpoint: $x = 1.5$, $f(1.5) < 0 \Rightarrow [1.5, 2]$
Bracketing Methods - The Bisection method

Second bracket: [1.5, 2]
Midpoint: \(x = 1.75, \ f(1.75) > 0 \Rightarrow [1.5, 1.75] \)
Bracketing Methods - The Bisection method

Third bracket: [1.5, 1.75]
Midpoint: $x = 1.625$, $f(1.625) > 0 \Rightarrow [1.5, 1.625]$
Approximate solution: $x = 1.5625$
Bisection theorem

Suppose

- f is continuous in $[a, b]$
- $f(r) = 0$ for some $r \in [a, b]$
- $f(a)$ and $f(b)$ have opposite signs

If \(\{c_n\} \) is the sequence produced by the bisection method, then

\[
|r - c_n| \leq \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}}
\]

so

\[\lim_{n \to \infty} c_n = r\]
Example: Bisection Method to solve a nonlinear equation

The annuity-due equation is

\[A = \frac{P}{I/12} \left(\left(1 + \frac{I}{12}\right)^N - 1 \right) \]

\(P \) monthly deposit, \(I \) annual interest, \(A \) amount after \(N \) deposits

You save Kr. 300 per month; what interest rate would allow you to have Kr. 50.000 after 12 years (\(N = 144 \))?

\[A(I) = \frac{300}{I/12} \left(\left(1 + \frac{I}{12}\right)^{144} - 1 \right) = 50.000 \]

\(A(0.04) = 55.331; \ A(0.03) = 51.922; \ A(0.02) = 48.779. \) Answer lies in \([0.02, 0.03]\). \(A(0.025) = 50.319, \) answer is in \([0.020, 0.025]\). After a few more tries, \(A(0.024) = 50.006, \) so you must find a bank that will give you a yearly interest rate of 2.4%