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Abstract

We present an approach to visual object-class recogni-
tion and segmentation based on a pipeline that combines
multiple, holistic �gure-ground hypotheses generated in a
bottom-up, object independent process. Decisions are per-
formed based on continuous estimates of the spatial over-
lap between image segment hypotheses and each putative
class. We differ from existing approaches not only in our
seemingly unreasonable assumption that goodobject-level
segmentscan be obtained in a feed-forward fashion, but
also in framing recognition as a regression problem. In-
stead of focusing on a one-vs-all winning margin that can
scramble ordering inside the non-maximum (non-winning)
set, learning produces aglobally consistentranking with
close ties to segment quality, hence to the extent entire ob-
ject or part hypotheses spatially overlap with the ground
truth. We demonstrate results beyond the current state of the
art for image classi�cation, object detection and semantic
segmentation, in a number of challenging datasets includ-
ing Caltech-101, ETHZ-Shape and PASCAL VOC 2009.

1. Introduction

Sliding windows approaches to object-category recogni-
tion have recently been demonstrated convincingly in dif-
�cult benchmarks [27, 10, 26]. By scanning the image
at multiple locations and scales, and viewing the world
through a `rectangular eye', recognition is phrased as a bi-
nary decision problem for which powerful classi�ers exist.
Recent developments have shown that scanning hundreds
of thousands of windows can be feasible for certain types
of features and classi�ers [26, 3].

The question is whether the early brute-force approach
to recognition is unavoidable and whether it is a feasible
solution for accurate categorization in the long run. Con-
sider �g. 1 (a). A good object detector might locate the
person and place a bounding box around her. However, the
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(a) (b)
Figure 1. (a) A girl relaxing on a bench. Top-down approaches
can encounter dif�culties segmenting this non-canonical pose. (b)
Semantic segmentation results produced by our algorithm.

non-canonical pose may impose a large bounding box (or
alternatively a large search space if different rotations of the
bounding box are scanned), still leaving a non-trivial con-
tour hypothesis space to be explored, inside the bounding
box, e.g. �g. 1 (b), by advanced processing stages such as
semantic segmentation or pose prediction.

The segmentation problem could be approached in a top-
down fashion [4, 17], by storing exemplar masks to guide
the search in new images. However, since the variability
of object shapes is large, only an approximate edge align-
ment between the training masks and new object instances
can be expected. Interesting solutions have been proposed
recently, although generalization to a large class of shapes
remains non-trivial [15, 18]. In fact, some of the best per-
forming methods for semantic segmentation currently do
not employ shape priors but directly classify individual pix-
els, based on statistics of patches enclosing them [24, 7, 16].

An open problem for segmentation and recognition sys-
tems is the design of tractable models capable to make more
informed decisions using increased spatial support. It ap-
pears necessary to be able to work at some intermediate spa-
tial scale, ideally on segments that can model entire objects,
or at least suf�ciently distinct parts of them. The idea of do-
ing recognition on larger segments is not new, but has been
barred for a long time by the lack of progress in reliably
obtaining such segments. However, recent developments
in segmentation algorithms provide a surprisingly effective
solution [6]. For each image, the Constrained Parametric
Min Cuts algorithm can create a set of20 � 200 �gure-
ground hypotheses, among which segments resembling full



objects are extracted with high probability (see �g.2 for an
example). This motivates our exploration of visual recogni-
tion directly from holistic bottom-up segment hypotheses.
Recognition proceeds similarly with sliding windows meth-
ods, but in a drastically reduced search-space: the one of
plausible object segments. This enables the use of more
powerful learning machinery using multiple distinct fea-
tures and nonlinear kernels, trained with a large number of
segments with different degree of overlap with the target
object. One of our main contributions is casting recogni-
tion as a regression problem of predicting segment quality,
measured by the amount of overlap with the ground truth.
This makes it possible to use all information available in the
segments that only partially overlap with ground truth, and
gives a signi�cant boost in the recognition performance.

Figure 2. Example of the segments used in the recognition pro-
cess. It is visible that good full-object segments exist, among the
multiple �gure-ground hypotheses generated. The challenge of the
recognition framework is to pull them out.

There is notable prior work on using image segments
for bottom-up recognition. Malisewicz and Efros [21]
learn per-exemplar distances between individual segments,
whereas Rabinovichet al. [23] study improvements in ob-
ject categorization using stable segmentations. Guet al.
[13] learn frequently occurring part-like object segments
that are discriminative for recognition. The scheme of
Pantofaruet al. [22] is closest to ours, as it also works within
a framework similar to detection. However, we use a differ-
ent segmentation method, we regress on segment qualities
(not classify using the standard machinery), and we employ
a different methodology for segment post-processing.

2. Method Overview

Our �rst processing step is running the CPMC segmen-
tation algorithm [6] on images, to produce a set of �gure-
ground segmentations for each image (�g.2). The objec-
tive is to recognize objects based on these segments. The
recognition framework consists of two stages: (1) segment
categorization and, (2) segment post-processing. In the �rst
stage, we learn a scoring function for each object category
that assesses the likelihood that a putative segment belongs

to this class. Then, we sort the image segments by their
scores, and combine high-rank segments to create the �nal
classi�cation, detection or segmentation results. The recog-
nition pipeline is depicted in �g.3. The �rst two steps in the
pipeline are from the CPMC segmentation algorithm, which
returns a number of segments that surpass a quality thresh-
old. In this paper we focus on the third and fourth steps of
the pipeline.

To understand the approach, it is important to notice that
different segments are useful in different ways. Consider
the set in �g. 2. Obviously, a segment capturing the en-
tire cow carries the most information in determining the
category it belongs to. Parts of the object, like the head,
contain a lower, yet signi�cant level of information. Seg-
ments with the cow plus some surrounding grassland pro-
vide context about where the cows can typically be found.
Even background segments carry some information. Persis-
tent mountain-grass segments show that this is a wilderness
scene. Some categories, e.g. sofa or TV would be unlikely
in the picture.

We aim to carry most of the information to the �nal de-
cision making stage. For this purpose, we train on all the
segments in images to avoid prematurely discarding infor-
mation. However, we need to distinguish important seg-
ments that carry potential information from unimportant
ones. We achieve this byregressingon a quality function
measuring overlap with the ground truth segments. The
overlap is a natural measure of quality that degrades grace-
fully: full object segments have the highest overlap, parts
and object+surrounding segments have moderate overlap
and dominantly background segments have the lowest (or
no) overlap. By regressing on overlap, we more judiciously
use partial information in all segments.

Figure 4. An illustration of segment categorization. Each segment
is input to regressors of all categories, producing estimated quali-
ties. The maximal score across categories is used to sort segments.

Prediction from our regression model generates a natural
ranking of all segments, based on their importance. This is
illustrated in �g. 4. The post-processing stage of our ap-
proach exploits this ranking in order to create an accurate
object mask. We group together high-con�dence segments
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Figure 3. Recognition pipeline. An image is segmented into multiple �gure-ground segments that are ranked using mid-level cues by
the CPMC segmentation algorithm [6] and the topN are retained. Quality functions on different categories rank the plausibility of each
segment belonging to each class. Top-scoring segments are selected for post-processing. The �nal masks are obtained from these segments,
and their scores are a weighted sum of the individual segmentscores.

that cover a similar region and attempt to consolidate a sin-
gle labeled mask from all of them. To do that, a con�dence
score is computed for each pixel, as a weighted sum of seg-
ment scores on the segments it belongs to. A learned thresh-
old on this score determines if the pixel should be included
in the �nal mask. All our classi�cation, detection and seg-
mentation results are based on such �nal masks.

3. Segment Categorization

We compute multiple �gure-ground segmentations and
extract multiple types of features for them. A weighted sum
of kernels on different types of features is used, with hy-
perparameters learned on the validation set. Based on the
features and the kernel combination, support-vector regres-
sion on an overlap measure generates a scoring function for
each object category.

3.1. Multiple Segments and Features

As a front end we use multiple �gure-ground segmenta-
tions from the algorithm in [6]. These are obtained by solv-
ing a series of constrained min-cut problems, for putative
sources and sinks placed on a regular image grid. Multiple
signi�cant scale breakpoints (solutions) for these problems
are computed using parametric max-�ow.

We use 8 types of features. In order to model object
appearance we extracted four bags of words of gray-level
SIFT [19] and color SIFT [25], computed on a regular grid,
two on the foreground and two on the background of each
segment. Computing bags of words on the background of
a segment aims to model a rough scene context, to improve
recognition. To encode shape information we extract four
other features: a bag of words of local shape contexts [2]
sampled along the boundary of the foreground, and three
pyramid HOGs [5]. The �rst pyramid HOG is de�ned di-
rectly on the contour of the foreground, whereas the other
two operate on edges detected by globalPB [20] inside the
foreground. The �rst two pyramid HOGs adapt the dimen-
sion of the cells in order to tightly �t the foreground mask,
whereas the third one has a �xed aspect ratio.

A chi-square kernelK (x; y) = exp( � � 2(x; y)) is
computed from each histogram feature and we use a
weighted sum of such kernels for regression. The weight

and the width of each chi-square kernel is learned using an
optimization scheme, detailed in subsection3.3.

3.2. Learning Scoring Functions with Regression

Suppose we are given an imageI with ground truth
segmentsf GI

qg. The segmentation algorithm provides a
set of segmentsf SI

pg. Denote theK object categories
f c1; c2; : : : ; cK g. Let also1(x) be the indicator function.

As discussed in the previous section, we learnK func-
tions f 1(SI

p ); : : : ; f K (SI
p ) by regression on a quality mea-

sure for segments. The quality function is based on a com-
monly used `union-over-intersection' overlap:

O(Sp ; Sq) =
jSp

T
Sqj

jSp
S

Sqj
: (1)

For each putative segmentSI
p , we measure its overlap

with all ground truth segmentsf GI
qg of the image. The

target valueyI
kp for SI

p and the categoryck is the maximal
overlap with ground truth segments belonging tock :

yI
kp = max

G I
q 2 ck

O(SI
p ; GI

q): (2)

Usually a segmentSI
p overlaps with at most a few ground

truth segments. For categories that do not appear,yI
kp = 0 .

After training, estimated qualities forSI
p on improbable cat-

egories tend to be close to0. Therefore, this regression
scheme is able to both estimate the quality function and
classify segments into categories.

To learn the functionf k (SI
p ) for each ck , we use a

nonlinear SVR (Support Vector Regression) to regressyI
kp

againstx I
p, the features extracted fromSI

p . The SVR for-
mulation could be written as:

min
w;�;�

1
2 kwk2 + C

P n
i =1 � i + C

P n
i =1 � i

s.t. � i � 0; � i � 0; 8i (3)

hw; � (x i )i � O(yi ; y) � � � � i

hw; � (x i )i � O(yi ; y) + � + � i

where� (x i ) is a nonlinear feature transform of the inputx i ,
de�ned implicitly by K (x i ; x j ) = h� (x i ); � (x j )i detailed



in the next section;� is a small constant, usually0:05 or
0:1. Using the kernel trick, it is possible to representf (SI

p )
in dual form asf (SI

p ) =
P

i � i K (x i ; x I
p), wherex i are

support vectors from the training set, and the� coef�cients
are obtained by the SVR optimizer.

The maximal score and the �nal class of the segment is
given bymaxk f k (SI

p ) andarg maxk f k (SI
p ), respectively.

However, scores on all categories will be used in the post-
processing stage. One can avoid the post-processing and
directly choose the segmentarg maxk;p f k (SI

p ) as output.
We call this asimple decision rule. In experiments we test
this rule against more complex post-processing rules.

A main challenge is the training set size. Since each seg-
ment is used as an example, the number of training exam-
ples could grow large (although still far less than in sliding
window approaches). We mine hard negative examples, an
approach that has become popular recently [10]. First, re-
gressors are trained only on ground truth segments and pu-
tative segments that best overlap the ground truth segments
for each training object. Then, we classify all training seg-
ments, �nd misclassi�ed ones, and re-train the model with
these segments added to the training set. Given a memory
budget, we sometimes add only a subset of the misclassi-
�ed segments and repeat the process multiple times. In this
way, we are able to train on the Caltech-101 and VOC 2009
datasets, using� 105 segments, in only a few hours.

3.3. Learning the Kernel Hyperparameters

Fundamental to equation (3) is the form of the kernel
function [14]. Since we employ a weighted addition of mul-
tiple kernels, it is infeasible to estimate all kernel hyperpa-
rameters via grid search. Instead, we use gradient descent
to estimate parameters. To speed-up the process, we ap-
ply the algorithm only on a subset of the data, comprising
segments that best overlap each ground truth segment. The
idea is that, the kernels need at least to separate well the
clean segments in different classes.

Given two exemplarsx i andx j the kernel model is

K (x i ; x j ) =
X

k

� k K k (x i ; x j ;  k ): (4)

where k is the width of the chi-square kernel. We learn�
and simultaneously by directly minimizing the misclassi-
�cation rate over all images in a (hold-out) validation set:

min
�;

X

S I
p 2 ck

1(f k (SI
p ) < max

i
f i (SI

p )) : (5)

wheref k (SI
p ) =

P
j;k � j � k K k (x i ; x j ;  k ) is trained with

SVR using the kernel (4) on the current� and .
To employ gradient-based optimization algorithms, we

use the sigmoid function as a continuous approximation to

the indicator function:
X

S I
p 2 ck

u(f k (SI
p ) < max

i
f i (SI

p )) ; (6)

whereu(x) = 1
1+ e� � 0 x . A sequential quadratic program-

ming method is then used to �nd a local optimum. Since
both the number of kernel parameters and the number of
examples are small, this process is fast.

We found that the hyperparameters learned by this pro-
cedure are very stable. We learned a set off � k ;  k g on the
VOC 2009 train and validation sets and used it throughout
all our experiments both in the VOC 2009 (validation and
test set) and for the ETHZ, with good performance.

3.4. Connections with Structural SVM

There are interesting connections between our method
and the structural SVM in [3]. For a bounding boxyi and
a ground truth bounding boxy, denotex i the feature vector
for yi andx the feature vector fory. The structural SVM
formulation for sliding window prediction is:

min
w;�

1
2 kwk2 + C

P n
i =1 � i

s.t. � i � 0; 8i (7)

hw; � (x; y) � � (x i ; yi )i � 1 � O(yi ; y) � � i :

Structural SVMs have a larger feature space than stan-
dard SVMs because they component appears in the feature
function� (x; y). However, they component of the kernel in
[3] includes only5 numbers: the class label and locations of
the bounding box, thus making the difference in the feature
space not important.

Another difference is the use of a sliding window ap-
proach. The formulation makes it possible to employ a
branch-and-bound algorithm to rapidly prune out irrelevant
regions of the search space. However, it is hard for both
the structural SVM and the branch-and-bound to work on a
much more powerful nonlinear SVM, as used in our algo-
rithm. Our task is much easier, because our use of image
segments eliminates the need to process a large number of
bounding boxes.

Ignoring these two differences, the structural SVM (7)
looks super�cially similar to our SVR formulation (3). It
could be seen that, if we assume thathw; � (x; y)i = 1 � � ,
then the last constraint in (7) would be exactly the same as
the last constraint in (3). The difference is clear, however:
(7) tries to score the ground truth bounding box, and ensures
its quality is better than other tentative bounding boxes, with
margin determined by the overlap. Meanwhile, (3) simply
scores all the segments and measure an absolute quality of
the segments.

We argue that our approach has important advantages,
because it does not only guarantee the highest rank for the



Score: Cat: 0.3361; Dog: 0.1669 Score: Cat: 0.327; Dog: 0.188 Final Mask Score: Cat: 0.9754

Score: Cat: 0.362; Dog: 0.1175 Score: Cat: 0.286; Dog: 0.3419 Score: Cat: 0.2874; Dog: 0.3297

Figure 5. (Best viewed in color) A cat image from VOC2009. We
show the cat/dog scores of the 5 top scoring segments from the
image. The proposed algorithm takes advantage of having class
predictions for multiple slightly different overlapping segments
to produce a robust decision, that improves consistently upon the
simple decision rule.

ground truth, but also the correct ranking for all the (pu-
tative) remaining segments: segments with higher overlap
would simply have higher scores. For structural SVM, only
thesmallestmargin between the best and other segments is
imposed based on the overlap. Since each segment may
have an arbitrarily low score without violating the con-
straints, the segment ordering is not preserved inside the
non-maximum subset.

4. Segment Post-Processing

The challenge of this stage is to form a consistent seg-
mentation. The simple decision rule of only using the high-
est scoring segment, cannot detect multiple objects in an
image. Class predictions of multiple overlapping segments
also provide a potential redundancy that can be exploited.
Our methodology employs a weighted consolidation of seg-
ments and a sequential interpretation strategy, in order tobe
able to analyze images with multiple objects.

Figure 5 shows an example. After classi�cation, the
highest-ranked segment was assigned the right category:
cat, but includes background around it. The next two seg-
ments located the cat exactly, but were classi�ed as dogs.
By taking into account the class predictions of the multiple
overlapping segments it's possible to reach a more robust
decision.

To decide which segments to combine, we compute a
segment intersection measure:

Int( Sp; Sq) =
jSp

T
Sqj

min( jSp j; jSqj)
: (8)

An advantage of this criterion is that parts are simply
grouped together with full object segments and their inter-
section is1. We consider segments with intesection> 0:75
(chosen based on the validation sets) for combination.

Since higher-ranked segments would have higher proba-
bility of representing the full object, we proceed iteratively.

First, we consider the highest-scoring segment as seed and
group segments that intersect it. After we have generated a
�nal mask from these segments, we proceed with the next
higher ranked segment. But this time we only choose seg-
ments that are not overlapping with the previously consoli-
dated mask (effectively this sequential strategy replacesthe
set of segments used in the combination with the consoli-
dated one).

We generate the scores for the pixels in the mask by
weighted voting based on individual segments

gk (pj ) =
X

i

wi 1(pj 2 SI
m ( i ) )f k (SI

m ( i ) ): (9)

wherem is a list of segments generated from the seed sorted
on descending scores. For a pixel, its score is only counted
on the segments that contain it. Therefore, different pixels
may have different scores in a �nal mask (e.g., �g.5, (f)).
In our system, only pixels with scores> 0:65are displayed
in the mask (again based on validation data). The mask has
a `mask score' which is obtained by taking the maximum
on pixel scores.

The weightswi in (9) are associated with the rank (in the
list m) of the segment only, uniform across different images
and classes. These are learned using linear regression on
targets that measure the overlap of the generated masks with
the ground truth (validation set).

Our classi�cation, detection, and segmentation results
are all based on the �nal masks. For classi�cation, in each
image we �nd the �nal mask with the highest mask score,
and output its label. For segmentation, we take a simple
thresholding approach, and output �nal masks with scores
> 0:8, chosen based on validation data.

For detection, the method changes slightly. We use the
overlap (1) to replace the intersection measure (8) in group-
ing segments. This is because when using an intersection
measure, small objects are combined within a larger seg-
ment containing them. For instance, sometimes we combine
two bottles placed next to each other in one large segment
enclosing both. This may not affect the performance crite-
rion for segmentation, but for detection, a single bounding
box would enclose both bottles, which would count as mis-
detection. Adapting the criterion from intersection to over-
lap makes the method work well for detection.

5. Experiments

In this section we show results of our recognition frame-
work (denoted SvrSegm, abbreviated from SVR on SEG-
Mentations) applied to three important tasks in image un-
derstanding: image classi�cation, object localization and
object segmentation. We compare with previously reported
results and test important components of the framework: re-
gression vs. classi�cation and segment post-processing vs.
the simple decision rule.
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Figure 6. Comparisons on Caltech-101. SvrSegm consistently out-
performs the current state of the art for all training regimes.

5.1. Image Classi�cation: Caltech101

We �rst test our algorithm on the well-known Caltech-
101 benchmark [9] for image classi�cation. As in standard
approaches, we report results averaged on all the 101 classes
over 3 different random splits. For each class, we use 5, 15
or 30 images for training and up to 15 images for testing,
following the common setting in the literature. We train
the model using the ground truth segmentation masks. In
�g. 6 we compare our results against existing approaches.
Our scores are consistently improving the current state of
the art for all training scenarios. In particular, our approach
outperforms other multiple kernel frameworks such as [12]
and segmentation-based frameworks such as [13].

Another test we do is to compare our regression scheme
with SVC (support vector classi�cation). Since the output
values of our SVR are different from those of SVC, we do
not employ our post-processing algorithm in this compar-
ison and use the simple decision rule. It turns out that in
Caltech-101, the simple decision rule actually works well.
Table1 shows the results con�rming that regression is sub-
stantially better than classi�cation. The post-processing
does not outperform the simple decision rule, except for
small training regimes (5 training images). A further ex-
periment shows that we are close to saturation in using the
current segmentation and features. The results generated by
training and testing only on our best segment for each im-
age are not signi�cantly higher than results based on multi-
ple segments. Arguably, in this dataset, improvements are
more likely to come from better features and better seg-
ments, rather than the decision framework itself.

5.2. Detection: ETHZ Shape Classes

We compare our detection results with the ones in [13],
a competitive segment-based recognition approach. We use
the ETH Zurich database [11] which contains5 shape cate-
gories in 255 images. We follow the experiment settings in
[11], employing the PASCAL criterion for deciding if a de-
tection is correct. The image set is evenly split into training
and testing sets and the reported performance is averaged
over 5 random splits. For training with just bounding box

Method 5 Train 15 Train 30 Train
Classi�cation 58.6 72.6 79.2
Regression 59.6 74.7 82.3
Reg. w/ Post-Processing 60.9 74.7 81.9
Best Segment 62.4 75.8 82.5
Ground Truth Segment 71.7 83.7 89.3

Table 1. Comparisons of different settings of SvrSegm for learning
in Caltech-101. Our regression on overlap framework signi�cantly
outperforms classi�er-based implementations. Post-processing
helps somewhat for small training sets. We also show the result
produced by using only the best ranked segments and ground truth
segments (in both training and testing), giving an idea of the best
performance the current recognition framework could obtain by
improving the segmentation.

data, we automatically extracted an object mask inside each
bounding box and set it as ground truth segmentation mask.
This mask is obtained by �rst generating multiple segments
inside the bounding box, then selecting the one that max-
imizes a mid-level segment quality score — the output of
the predictor in [6] , minus a penalty for deviations from
the bounding box limits, here implemented as sum of mini-
mum euclidean distance of the segment to each edge of the
bounding box.

ETHZ results are given in �g.7. Our method outper-
forms competitors by nearly an order of magnitude – at0:02
FPPI (false positives per image) our detection rate is com-
parable with the detection rate at 0.2 FPPI in Gu et al. The
comparison with other algorithms at0:02 FPPI is shown in
Table3. We achieve98:3%, a nearly perfect detection rate
for the Swans category, at less than0:02FPPI.

We also evaluated the quality of the resulting object
segmentations using the ground truth segmentation masks
made available by the authors of [11]. Following [13], we
report pixel average precision (AP) on each class. For each
class, a ROC curve is computed by varying the detection
threshold on the mask scores of segments. AP is computed
as the area under the curve. Comparisons with [13] in Table
2 show improvement in most classes.

Detection results of our algorithm for various training
conditions are shown in �g.8. We use three variants for the
scoring function: overlap with the bounding box (named
Bounding Box in the �gure); overlap with automatic object
mask generated from the bounding box (Automatic Over-
lap) and overlap with the ground truth object mask (Ground
Truth). The algorithm appears to be robust to noise in the
overlap measure. We also trained our recognition frame-
work with segments from [1] (denoted OWT-UCM Seg-
ments), but this setting produced signi�cantly lower scores
than with CPMC segments. A possible explanation is that
the OWT-UCM segments usually do not correspond to full
objects, but to parts – this input does not appear to be a par-
ticularly effective match for our recognition framework.
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Figure 7. Comparison on ETHZ-Shape classes. SvrSegm is trained using only bounding box data.
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Figure 8. Comparison on ETHZ-Shape classes for different training conditions. SvrSegm has been trained on overlap withobject masks
generated from the bounding box (Automatic Overlap), overlap with the bounding box (Bounding Box), ground truth objectmasks (Ground
Truth) and with segments from Arbelaez et al. [1] (OWT-UCM Masks).

Categories Gu et al. SvrSegm
Applelogos 77:2 � 11:1 89:0 � 1:9
Bottles 90:6 � 1:5 90:0 � 2:1
Giraffes 74:2 � 2:5 75:4 � 1:9
Mugs 76:0 � 4:4 77:7 � 5:9
Swans 60:6 � 1:3 80:5 � 2:8

Average 75:7 � 3:2 82:5 � 1:2
Table 2. Segmentation results for ETHZ-Shape. Performance(%)
is measured as pixel-wise mean AP over 5 trials, following [13].

Categories Ferrari et al. Gu et al. SvrSegm
Applelogos 68.83 69.75 90.48
Bottles 60.32 74.59 89.13
Mugs 46.06 54.33 81.25
Giraffes 23.75 49.63 92.07
Swans 31.60 56.98 98.31
Average 47.76 59.40 90.25

Table 3. Detection rate at 0.02 FPPI in ETHZ-Shape. SvrSegm
substantially improves on the state-of-the art in this regime.

5.3. Segmentation: VOC 2009

A variant of the SvrSegm algorithm is used in our Bonn
entry for the PASCAL VOC 2009 Challenge. The entry won
the segmentation challenge with an accuracy of36:3%. Af-
ter the challenge, bounding boxes from images in the detec-
tion challenge are used as additional training data (allowed
by the challenge rules), this improved the accuracy to37:2%
(Table4 [8]). Fig. 9 shows some successfully segmented
images from the test set.

We have also run an experiment to assess the effective-
ness of our segment post-processing strategy in VOC, where
we train on the VOC training set and test on the validation
set. Both have roughly the same size of750 images and
1600objects. The simple decision rule achieved an accu-
racy of 27:6%. Since it cannot select multiple objects per

Method Accuracy Method Accuracy
SvrSegm 37.2 BrookesMSRC 24.8

CVC 34.5 UCI 24.7
NEC-UIUC 29.7 MPI 15.0

UoCTTI 29.0 UC3M 14.5
LEAR 25.7 UCLA 13.8

Table 4. VOC 2009 Segmentation Results.

image, we compare it against simply outputing the segments
that intersect the top-ranked segment. This achieved an ac-
curacy of29:6%. Our full post-processing approach reaches
an accuracy of30:6%. This shows the effectiveness of our
post-processing steps for pixel-wise classi�cation.

6. Conclusion

We have described an object recognition framework
based on a novel front end algorithm [6], that generates
multiple �gure-ground segmentations. In this setting, un-
like previous methods that heavily rely on classi�cation, we
frame recognition as a regression problem of estimating the
spatial overlap of a given segment with the target object
of a desired class. Instead of selecting only one segment,
we produce a ranking in the space of all putative segments
based on spatial overlap. This enables us to better exploit
segments that partially overlap the ground truth to consoli-
date recognition. We demonstrate state-of-the-art results in
image classi�cation, object detection and semantic segmen-
tation in Caltech-101, ETHZ-Shapes and PASCAL VOC
2009. Our approach is dominantly bottom-up: object class
knowledge is only used after plausible object segmentations
have been obtained. In the long run, a closer integration
of top-down information should improve performance. For
now, we make a case that bottom-up modules beyond super-
pixels, can achieve good performance in both segmentation
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Figure 9. Some successful segmentations on the VOC testset.Note that the method handles partial views and background clutter.

and recognition tasks.
In future work we plan to improve the scalability of our

methodology so to be able to process hundreds of thousands
of images. This will require improvement in both complex
feature extraction methods and in training large-scale non-
linear kernel machines. Limited-memory methods and lin-
ear approximations are currently studied.
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