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Abstract

We present an approach to visual object-class recogni-

tion and segmentation based on a pipeline that combines

multiple, holistic gure-ground hypotheses generated in a

bottom-up, object independent process. Decisions are per-
formed based on continuous estimates of the spatial over-

(b)

lap between image segment hypotheses and each putativ@igure 1. (a) A girl relaxing on a bench. Top-down approaches

class. We differ from existing approaches not only in our
seemingly unreasonable assumption that gobgbct-level
segmentgan be obtained in a feed-forward fashion, but
also in framing recognition as a regression problem. In-
stead of focusing on a one-vs-all winning margin that can
scramble ordering inside the non-maximum (non-winning)
set, learning produces globally consistentanking with
close ties to segment quality, hence to the extent entire ob
ject or part hypotheses spatially overlap with the ground
truth. We demonstrate results beyond the current statesof th
art for image classi cation, object detection and semantic
segmentation, in a number of challenging datasets includ-
ing Caltech-101, ETHZ-Shape and PASCAL VOC 2009.

1. Introduction

Sliding windows approaches to object-category recogni-
tion have recently been demonstrated convincingly in dif-
cult benchmarks p7, 10, 26]. By scanning the image
at multiple locations and scales, and viewing the world
through a “rectangular eye', recognition is phrased as a bi-
nary decision problem for which powerful classi ers exist.
Recent developments have shown that scanning hundred
of thousands of windows can be feasible for certain types
of features and classi ers2f, 3].

The question is whether the early brute-force approach
to recognition is unavoidable and whether it is a feasible
solution for accurate categorization in the long run. Con-
sider g. 1 (a). A good object detector might locate the
person and place a bounding box around her. However, th

The rst two authors contributed equally to this paper.

can encounter dif culties segmenting this non-canoniczden (b)
Semantic segmentation results produced by our algorithm.

non-canonical pose may impose a large bounding box (or
alternatively a large search space if different rotatidriibe
bounding box are scanned), still leaving a non-trivial con-
tour hypothesis space to be explored, inside the bounding
box, e.g. g. 1 (b), by advanced processing stages such as

semantic segmentation or pose prediction.

The segmentation problem could be approached in a top-
down fashion {, 17], by storing exemplar masks to guide
the search in new images. However, since the variability
of object shapes is large, only an approximate edge align-
ment between the training masks and new object instances
can be expected. Interesting solutions have been proposed
recently, although generalization to a large class of shape
remains non-trivial 5, 18). In fact, some of the best per-
forming methods for semantic segmentation currently do
not employ shape priors but directly classify individuad-pi
els, based on statistics of patches enclosing thehv] 16].

An open problem for segmentation and recognition sys-
tems is the design of tractable models capable to make more
informed decisions using increased spatial support. It ap-
gears necessary to be able to work at some intermediate spa-
tial scale, ideally on segments that can model entire ohject
or at least suf ciently distinct parts of them. The idea of do
ing recognition on larger segments is not new, but has been
barred for a long time by the lack of progress in reliably
obtaining such segments. However, recent developments
in segmentation algorithms provide a surprisingly effeeti

esolution [f]l. For each image, the Constrained Parametric

Min Cuts algorithm can create a set @ 200 gure-
ground hypotheses, among which segments resembling full



objects are extracted with high probability (see Zjfor an to this class. Then, we sort the image segments by their
example). This motivates our exploration of visual recegni scores, and combine high-rank segments to create the nal
tion directly from holistic bottom-up segment hypotheses. classi cation, detection or segmentation results. Th@gec
Recognition proceeds similarly with sliding windows meth- nition pipeline is depicted in g3. The rsttwo steps in the
ods, but in a drastically reduced search-space: the one opipeline are from the CPMC segmentation algorithm, which
plausible object segments. This enables the use of moreaeturns a number of segments that surpass a quality thresh-
powerful learning machinery using multiple distinct fea- old. In this paper we focus on the third and fourth steps of
tures and nonlinear kernels, trained with a large number ofthe pipeline.

segments with different degree of overlap with the target  To understand the approach, it is important to notice that
object. One of our main contributions is casting recogni- different segments are useful in different ways. Consider
tion as a regression problem of predicting segment quality,the set in g. 2. Obviously, a segment capturing the en-
measured by the amount of overlap with the ground truth. tire cow carries the most information in determining the
This makes it possible to use all information available i th category it belongs to. Parts of the object, like the head,
segments that only partially overlap with ground truth, and contain a lower, yet signi cant level of information. Seg-
gives a signi cant boost in the recognition performance.  ments with the cow plus some surrounding grassland pro-
vide context about where the cows can typically be found.
Even background segments carry some information. Persis-
tent mountain-grass segments show that this is a wilderness
scene. Some categories, e.g. sofa or TV would be unlikely
in the picture.

We aim to carry most of the information to the nal de-
cision making stage. For this purpose, we train on all the
segments in images to avoid prematurely discarding infor-
mation. However, we need to distinguish important seg-
ments that carry potential information from unimportant
ones. We achieve this bhggressingon a quality function
measuring overlap with the ground truth segments. The

cess. Itis visible that good full-object segments existoagithe ~ OVerlap is a natural measure of quality that degrades grace-

multiple gure-ground hypotheses generated. The chaisfghe  fully: full object segments have the highest overlap, parts
recognition framework is to pull them out. and object+surrounding segments have moderate overlap

and dominantly background segments have the lowest (or

There is notable prior work on using image segments no) overlap. By regressing on overlap, we more judiciously
for bottom-up recognition. Malisewicz and Efro&]] use partial information in all segments.
learn per-exemplar distances between individual segments
whereas Rabinovicht al. [23] study improvements in ob-
ject categorization using stable segmentations. eGal.
[13] learn frequently occurring part-like object segments
that are discriminative for recognition. The scheme of
Pantofariet al. [27] is closest to ours, as it also works within
a framework similar to detection. However, we use a differ-
ent segmentation method, we regress on segment qualitie
(not classify using the standard machinery), and we employ
a different methodology for segment post-processing.

% 0 } ( (

Figure 2. Example of the segments used in the recognition pro
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2. Method Overview
) . ) Figure 4. An illustration of segment categorization. Eaefirsent

Our rst processing step is running the CPMC segmen- js input to regressors of all categories, producing estthguali-
tation algorithm f] on images, to produce a set of gure- ties. The maximal score across categories is used to Soneses,.
ground segmentations for each image (8. The objec-
tive is to recognize objects based on these segments. The Prediction from our regression model generates a natural
recognition framework consists of two stages: (1) segmentranking of all segments, based on their importance. This is
categorization and, (2) segment post-processing. In tste r illustrated in g. 4. The post-processing stage of our ap-
stage, we learn a scoring function for each object categoryproach exploits this ranking in order to create an accurate
that assesses the likelihood that a putative segment kelongobject mask. We group together high-con dence segments
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Figure 3. Recognition pipeline. An image is segmented intdtiple gure-ground segments that are ranked using micleues by
the CPMC segmentation algorithrfi] [and the topN are retained. Quality functions on different categorigskréne plausibility of each
segment belonging to each class. Top-scoring segmentslaotesd for post-processing. The nal masks are obtainea these segments,
and their scores are a weighted sum of the individual segetemes.

that cover a similar region and attempt to consolidate a sin-and the width of each chi-square kernel is learned using an
gle labeled mask from all of them. To do that, a con dence optimization scheme, detailed in subsectia

score is computed for each pixel, as a weighted sum of seg-

ment scores on the segments it belongs to. A learned thresh3.2. Learning Scoring Functions with Regression

old on this score determines if the pixel should be included
in the nal mask. All our classi cation, detection and seg-
mentation results are based on such nal masks.

Suppose we are given an imagewith ground truth
segmentd G{qg. The segmentation algorithm provides a
set of segmentﬁSF')g. Denote theK object categories

.. fcy; ;i ek g Letalsol(x) be the indicator function.
3. Segment Categorization As discussed in the previous section, we lerrunc-
We compute multiple gure-ground segmentations and tonsf1(Sy);::::fk (Sh) by regression on a quality mea-

extract multiple types of features for them. A weighted sum Sure for segments. The quality function is based on a com-
of kernels on different types of features is used, with hy- monly used “union-over-intersection’ overlap:
perparameters learned on the validation set. Based on the s T S i

features and the kernel combination, support-vector eegre O(Sp; Sq) = J—"S—"J (1)

sion on an overlap measure generates a scoring function for 1Sp Sql

h obj ry. . .
each object category For each putative segmeﬁt, we measure its overlap

3.1. Multiple Segments and Features with all ground truth segmentst!qg of the image. The

. target valuey,, for S, and the categorg is the maximal
As a front end we use multiple gure-ground segmenta- overlap with ground truth segments belongingito
tions from the algorithm in€]. These are obtained by solv-

ing a series of constrained min-cut problems, for putative yll(p = max O(S :G'q)i 2)
sources and sinks placed on a regular image grid. Multiple Gy2 ok
signi cant scale breakpoints (solutions) for these praotde | )
are computed using parametric max- ow. Usually a segmerts, overlaps with at most a few ground
We use 8 types of features. In order to model object truth segments. For categories that do not apggr= 0.
appearance we extracted four bags of words of gray-levelAfter training, estimated qualities ij) on improbable cat-
SIFT [19 and color SIFT P5], computed on a regular grid, egories tend to be close @ Therefore, this regression
two on the foreground and two on the background of eachscheme is able to both estimate the quality function and
segment. Computing bags of words on the background ofclassify segments into categories.
a segment aims to model a rough scene context, to improve To learn the functiorfy(S}) for eachc, we use a
recognition. To encode shape information we extract four nonlinear SVR (Support Vector Regression) to reg;%g,s
other features: a bag of words of local shape conte}jts [ againstx},, the features extracted fros},. The SVR for-
sampled along the boundary of the foreground, and threemulation could be written as:
pyramid HOGs §]. The rst pyramid HOG is de ned di-

rectly on the contour of the foreground, whereas the other min  Skwk? + C P toi+C P A

two operate on edges detected by globalPH [nside the e )

foreground. The rst two pyramid HOGs adapt the dimen- S.t. i 00 08 (3)
sion of the cells in order to tightly t the foreground mask, hw; (x)i  O(yi:y) i

whereas the third one has a xed aspect ratio. hw, (x))i  O(yi;y)+ + |

A chi-square kerneK (x;y) = exp( 2(x;y)) is
computed from each histogram feature and we use awhere (X;) isanonlinear feature transform of the input
weighted sum of such kernels for regression. The weightde ned implicitly by K (xi;X;j) = h (x;i); (Xj)i detailed



in the next section; is a small constant, usuall®.05 or the indicator function:

0:1. Using the kernel trickpit is possible to represé(ﬂSF')) X | |
in dual form asf (S}) = = ; K (xi;x}), wherex; are u(f(Sp) < maxti(Sy)); (6)
support vectors from the training set, and theoef cients Sp2c
are obtained by the SVR optimizer. B 1 . )
The maximal score and the nal class of the segment is WNereu(x) = 5 ="—=. A sequential quadratic program-

ming method is then used to nd a local optimum. Since
both the number of kernel parameters and the number of
8xamples are small, this process is fast.

We found that the hyperparameters learned by this pro-
cedure are very stable. We learned a sdt @f, g on the

given bymaxy fk(S,')) andarg max fk(S,')), respectively.
However, scores on all categories will be used in the post-
processing stage. One can avoid the post-processing an
directly choose the segmeatg maxp fk(S,')) as output.

We call this asimple decision ruleln experiments we test VOC 2000 trai d validati d ditth h
this rule against more complex post-processing rules. train and validation sets and used it throughout

A main challenge is the training set size. Since each Seg_aII our experiments both in the VOC 2009 (validation and

ment is used as an example, the number of training exam-teSt set) and for the ETHZ, with good performance.

plgs could grow large (althOL_Jgh still far Ies; than in slglin 3. 4. Connections with Structural SVM
window approaches). We mine hard negative examples, an
approach that has become popular recently.[ First, re- There are interesting connections between our method
gressors are trained only on ground truth segments and puand the structural SVM in3. For a bounding boy; and
tative segments that best overlap the ground truth segmenta ground truth bounding bok denotex; the feature vector
for each training object. Then, we classify all trainingseg for y; andx the feature vector foy. The structural SVM
ments, nd misclassi ed ones, and re-train the model with formulation for sliding window prediction is:
these segments added to the training set. Given a memory

. . . i 1 2 n .
budget, we sometimes add only a subset of the misclassi- ”VJ,'” skwk®+ C - iy
ed segments and repeat the process multiple times. In this s:t. o8 @)
way, we are able to train on the Caltech-101 and VOC 2009 -
datasets, using 10° segments, in only a few hours. hw; (xy)  (Xisy)i 10 O(yizy) it

Structural SVMs have a larger feature space than stan-
dard SVMs because thecomponent appears in the feature

Fundamental to equatior8) is the form of the kernel ~ function (x;y). However, they componentof the kernelin
function [L4]. Since we employ a weighted addition of mul- [3] includes only5 numbers: the class label and locations of
tiple kernels, it is infeasible to estimate all kernel hygeer the bounding box, thus making the difference in the feature
rameters via grid search. Instead, we use gradient desceripace notimportant.
to estimate parameters. To speed-up the process, we ap- Another difference is the use of a sliding window ap-
ply the algorithm only on a subset of the data, comprising proach. The formulation makes it possible to employ a
segments that best overlap each ground truth segment. Thranch-and-bound algorithm to rapidly prune out irrelévan
idea is that, the kernels need at least to separate well théegions of the search space. However, it is hard for both

3.3. Learning the Kernel Hyperparameters

clean segments in different classes. the structural SVM and the branch-and-bound to work on a
Given two exemplars; andx; the kernel model is much more powerful nonlinear SVM, as used in our algo-
X rithm. Our task is much easier, because our use of image
K (X)) = KX X k) (4) segments eliminates the need to process a large number of
K bounding boxes.

_ _ . Ignoring these two differences, the structural SVR) (
where  is the width of the chi-square kernel. We learn  |ooks super cially similar to our SVR formulatior3j. It
and simultaneously by directly minimizing the misclassi- could be seen that, if we assume that (x;y)i =1 ,
cation rate over all images in a (hold-out) validation set:  then the last constraint ifY{ would be exactly the same as

X the last constraint in3). The difference is clear, however:
min 1(f g (S,')) < maxf; (S,'))) : (5) (7) tries to score the ground truth bounding box, and ensures
S)2ck ' its quality is better than other tentative bounding boxat) w
margin determined by the overlap. Meanwhilg), §imply
wheref k(SF')) = ki kKk(Xi;Xj; k) is trained with scores all the segments and measure an absolute quality of
SVR using the kernel) on the current and . the segments.

To employ gradient-based optimization algorithms, we  We argue that our approach has important advantages,
use the sigmoid function as a continuous approximation to because it does not only guarantee the highest rank for the



Score: Cat: 0.362; Dog: 0.1175

First, we consider the highest-scoring segment as seed and
group segments that intersect it. After we have generated a
nal mask from these segments, we proceed with the next
higher ranked segment. But this time we only choose seg-
ments that are not overlapping with the previously consoli-

Scor(f: Cat: 0.336}; Dog: Score: Cat: 0.323; Dog: Final Mask Score: Cat: 0.9754 dated mask (eﬁective'y th|s Sequentia| Strategy replms
' Y set of segments used in the combination with the consoli-
dated one).
4 We generate the scores for the pixels in the mask by
> ‘ T weighted voting based on individual segments
Figure 5. (Best viewed in color) A cat image from VOC2009. We X
show the cat/dog scores of the 5 top scoring segments from the (p) = wil(p 2 Srln(i))f k(SrIn(i)): 9)

image. The proposed algorithm takes advantage of havirgs cla i

predictions for multiple slightly different overlappinggments  \herem is a list of segments generated from the seed sorted
to produce a robust decision, that improves consistentynupe o descending scores. For a pixel, its score is only counted
Simple decision rule. on the segments that contain it. Therefore, different gixel
may have different scores in a nal mask (e.g., §, (f)).

In our system, only pixels with scores0:65are displayed

in the mask (again based on validation data). The mask has

ground truth, but also the correct ranking for all the (pu-
tative) remaining segments: segments with higher overlap

would simply have higher scores. For structural SVM, only _ . o : . .
. ._a ‘mask score' which is obtained by taking the maximum
thesmallestmargin between the best and other segments IS pixel scores

imposed bas_ed on the overlap._ Since _each segment may The weightsw; in (9) are associated with the rank (in the
have an arbitrarily low score without violating the con- .. . . A

. L o list m) of the segment only, uniform across differentimages
straints, the segment ordering is not preserved inside the . .

) and classes. These are learned using linear regression on

non-maximum subset. .
targets that measure the overlap of the generated masks with
the ground truth (validation set).

Our classi cation, detection, and segmentation results
The challenge of this stage is to form a consistent seg-are all based on the nal masks. For classi cation, in each
mentation. The simple decision rule of only using the high- image we nd the nal mask with the highest mask score,
est scoring segment, cannot detect multiple objects in anand output its label. For segmentation, we take a simple
image. Class predictions of multiple overlapping segmentsthresholding approach, and output nal masks with scores
also provide a potential redundancy that can be exploited.> 0:8, chosen based on validation data.
Our methodology employs a weighted consolidation of seg- ~ FOr detection, the method changes slightly. We use the
ments and a sequential interpretation strategy, in ordeeto  overlap () to replace the intersection measuspi( group-
able to analyze images with multiple objects. ing segments. This is because when using an intersection
Figure 5 shows an example. After classi cation, the Mmeasure, small objects are combined within a larger seg-
highest-ranked segment was assigned the right Categorymentcontainingthem. For instance, sometimes we combine
cat, but includes background around it. The next two seg-tWo bottles placed next to each other in one large segment
ments located the cat exactly, but were classi ed as dogs.enclosing both. This may not affect the performance crite-
By taking into account the class predictions of the multiple ion for segmentation, but for detection, a single bounding
overlapping segments it's possible to reach a more robustPox would enclose both bottles, which would count as mis-
decision. detection. Adapting the criterion from intersection to eve
To decide which segments to combine, we compute alap makes the method work well for detection.
segment intersection measure:

4. Segment Post-Processing

s Te 5. Experiments
Int( Sp; Sq) = m (8) In this section we show results of our recognition frame-
Pl work (denoted SvrSegm, abbreviated from SVR on SEG-

An advantage of this criterion is that parts are simply Mentations) applied to three important tasks in image un-
grouped together with full object segments and their inter- derstanding: image classi cation, object localizatiordan
section isl. We consider segments with intesectrd: 75 object segmentation. We compare with previously reported
(chosen based on the validation sets) for combination. results and test important components of the framework: re-

Since higher-ranked segments would have higher proba-gression vs. classi cation and segment post-processing vs
bility of representing the full object, we proceed iterativ the simple decision rule.



Caltech101 comparison to literature

Method 5 Train | 15 Train | 30 Train
s Classi cation 58.6 72.6 79.2
70 — Regression 59.6 74.7 82.3
360 - / Reg. w/ Post-Processing 60.9 74.7 81.9
S50l L Best Segment 62.4 75.8 825
S azeinic Smd and Ponce (CVPROS) Ground Truth Segment| 71.7 83.7 89.3

40F ¥ Pinto, Cox and DiCarlo (PLOS08)
Baiman, Shechiman and i (CYPROE)

30p Seu Lim, Arbelaez and Malik (CVPROS) Table 1. Comparisons of different settings of SvrSegm faimang
A Gehler and Nowozin (ICCV09) . ) ) R

e [ SwrSegm (This paper) in Caltech-101. Our regression on overlap framework sicguntly

I i
5 10 25 30

#uaining examples outperforms classi er-based implementations. Post-@semg
helps somewhat for small training sets. We also show thdtresu
produced by using only the best ranked segments and grauthd tr
segments (in both training and testing), giving an idea eftiast
performance the current recognition framework could abtai
improving the segmentation.

We rst test our algorithm on the well-known Caltech-
101 benchmarkd] for image classi cation. As in standard data, we automatically extracted an object mask inside each
approaches, we report results averaged on all the 101 slassdoounding box and set it as ground truth segmentation mask.
over 3 different random splits. For each class, we use 5, 15This mask is obtained by rst generating multiple segments
or 30 images for training and up to 15 images for testing, inside the bounding box, then selecting the one that max-
following the common setting in the literature. We train imizes a mid-level segment quality score — the output of
the model using the ground truth segmentation masks. Inthe predictor in §] , minus a penalty for deviations from
g. 6 we compare our results against existing approachesthe bounding box limits, here implemented as sum of mini-
Our scores are consistently improving the current state ofmum euclidean distance of the segment to each edge of the

Figure 6. Comparisons on Caltech-101. SvrSegm consigteut!
performs the current state of the art for all training regime

5.1. Image Classi cation: Caltech-101

the art for all training scenarios. In particular, our apgmio
outperforms other multiple kernel frameworks such®3 [
and segmentation-based frameworks such &s [

bounding box.

ETHZ results are given in g.7. Our method outper-
forms competitors by nearly an order of magnitude 6:62

Another test we do is to compare our regression schemeFPP| (false positives per image) our detection rate is com-
with SVC (support vector classi cation). Since the output parable with the detection rate at 0.2 FPPI in Gu et al. The
values of our SVR are different from those of SVC, we do comparison with other algorithms @02 FPPI is shown in
not employ our post-processing algorithm in this compar- Table3. We achieved8:3%, a nearly perfect detection rate
ison and use the simple decision rule. It turns out that in for the Swans category, at less tha@2 FPPI.

Caltech-101, the simple decision rule actually V\_/ork.s well. e also evaluated the quality of the resulting object
Tablel shows the results con rming that regression is sub- segmentations using the ground truth segmentation masks
stantially better than class_i cation. _T_he post-procegsin  made available by the authors dfl]. Following [13], we
does not outperform the simple decision rule, except for report pixel average precision (AP) on each class. For each
small training regimes (5 training images). A further ex- class, a ROC curve is computed by varying the detection
periment shows that we are close to saturation in using theinreshold on the mask scores of segments. AP is computed

current segmentation and features. The results genengted by the area under the curve. Comparisons vifhih Table

training and testing only on our best segment for each im-
age are not signi cantly higher than results based on multi-

ple segments. Arguably, in this dataset, improvements are

more likely to come from better features and better seg-
ments, rather than the decision framework itself.

5.2. Detection: ETHZ Shape Classes

We compare our detection results with the oneslif,[

2 show improvement in most classes.

Detection results of our algorithm for various training
conditions are shown in g8. We use three variants for the
scoring function: overlap with the bounding box (hamed
Bounding Box in the gure); overlap with automatic object
mask generated from the bounding box (Automatic Over-
lap) and overlap with the ground truth object mask (Ground
Truth). The algorithm appears to be robust to noise in the

a competitive segment-based recognition approach. We us@verlap measure. We also trained our recognition frame-

the ETH Zurich databasé ] which contains shape cate-
gories in 255 images. We follow the experiment settings in
[11], employing the PASCAL criterion for deciding if a de-
tection is correct. The image set is evenly split into tradni

work with segments from1] (denoted OWT-UCM Seg-
ments), but this setting produced signi cantly lower s&re
than with CPMC segments. A possible explanation is that
the OWT-UCM segments usually do not correspond to full

and testing sets and the reported performance is averagedbjects, but to parts — this input does not appear to be a par-

over 5 random splits. For training with just bounding box

ticularly effective match for our recognition framework.
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Truth) and with segments from Arbelaez et all (OWT-UCM Masks).

Categories| Guetal. SvrSegm Method Accuracy Method Accuracy
Applelogos| 77:2 111 | 890 1.9 SvrSegm 37.2 BrookesMSRC| 24.8
Bottles 906 1.5 | 900 21 CvC 34.5 uUcCl 24.7
Giraffes 742 25 | 754 1.9 NEC-UIUC 29.7 MPI 15.0
Mugs 760 44 | 777 59 UoCTTI 29.0 UC3M 14.5
Swans 606 1:3 | 805 28 LEAR 25.7 UCLA 13.8
| Average | 757 32 | 825 12|

Table 2. Segmentation results for ETHZ-Shape. Performéye Table 4. VOC 2009 Segmentation Results.

is measured as pixel-wise mean AP over 5 trials, followinig. image, we compare it against simply outputing the segments

Categories | Ferrarietal.] Guetal.| SvrSegm that intersect the top-ranked segment. This achieved an ac-
Applelogos 68.83 69.75 90.48 curacy 0f29:6%. Our full post-processing approach reaches
Bottles 60.32 74.59 89.13 an accuracy 080:6%. This shows the effectiveness of our
Mugs 46.06 54.33 81.25 post-processing steps for pixel-wise classi cation.
Giraffes 23.75 49.63 92.07
Swans 31.60 56.98 98.31 6 Conc|usion

| Average | 47.76 59.40 | 90.25 |

We have described an object recognition framework
based on a novel front end algorithrd],[ that generates
multiple gure-ground segmentations. In this setting, un-
5.3. Segmentation: VOC 2009 like previous m_ethods that heayily rely on classi gatiom w

frame recognition as a regression problem of estimating the

A variant of the SvrSegm algorithm is used in our Bonn spatial overlap of a given segment with the target object
entry for the PASCAL VOC 2009 Challenge. The entrywon of a desired class. Instead of selecting only one segment,
the segmentation challenge with an accurac§®38%. Af- we produce a ranking in the space of all putative segments
ter the challenge, bounding boxes from images in the detec-based on spatial overlap. This enables us to better exploit
tion challenge are used as additional training data (alflowe segments that partially overlap the ground truth to consoli
by the challenge rules), this improved the accura&n@% date recognition. We demonstrate state-of-the-art regult
(Table4 [8]). Fig. 9 shows some successfully segmented image classi cation, object detection and semantic segmen
images from the test set. tation in Caltech-101, ETHZ-Shapes and PASCAL VOC

We have also run an experiment to assess the effective2009. Our approach is dominantly bottom-up: object class
ness of our segment post-processing strategy in VOC, wher&knowledge is only used after plausible object segmentation
we train on the VOC training set and test on the validation have been obtained. In the long run, a closer integration
set. Both have roughly the same size7&0 images and  of top-down information should improve performance. For
16000bjects. The simple decision rule achieved an accu- now, we make a case that bottom-up modules beyond super-
racy of 27:6%. Since it cannot select multiple objects per pixels, can achieve good performance in both segmentation

Table 3. Detection rate at 0.02 FPPI in ETHZ-Shape.
substantially improves on the state-of-the art in thismexgi

SvrSegm



and recognition tasks.

In future work we plan to improve the scalability of our
methodology so to be able to process hundreds of thousands
of images. This will require improvement in both complex [11]

feature extraction methods and in training large-scale non

[10] P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan.

linear kernel machines. Limited-memory methods and lin-
ear approximations are currently studied. [
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