Formelsamling

Fysikaliska modeller

Kontinuitetsekvationen

\[
\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{j} = k.
\]

Diffusion

\[
\mathbf{j} = -D \nabla u,
\]

\[
\frac{\partial u}{\partial t} - D \Delta u = k.
\]
(Allmännare \(\frac{\partial u}{\partial t} - \nabla \cdot (D \nabla u) = k \).)

Värmeledning

\[
\mathbf{j} = -\lambda \nabla u,
\]

\[
\frac{\partial u}{\partial t} - a \Delta u = \frac{a}{\lambda} k \quad \text{där} \quad a = \frac{\lambda}{\rho c^2}.
\]
(Allmännare \(\rho c \frac{\partial u}{\partial t} - \nabla \cdot (\lambda \nabla u) = k \).)

Elektrostatisk potential

\[
\Delta u = -\frac{\rho}{\varepsilon \varepsilon_0}.
\]

Svängande sträng och membran

\[
\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = \frac{f}{\rho} \quad \text{där} \quad c^2 = \frac{S}{\rho}.
\]
(Allmännare \(\rho \frac{\partial^2 u}{\partial t^2} - \nabla \cdot (S \nabla u) = f \).)

Longitudinella svängningar

\[
\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \frac{f}{\rho_i} \quad \text{där} \quad c^2 = \frac{\alpha}{\rho_i}, \quad S = \alpha \frac{\partial u}{\partial x}.
\]

Svängningar i gaser (ljud)

\[
u = \frac{p - p_0}{p_0} \quad \text{(tryckstörning)},
\]

\[
\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 \quad \text{där} \quad c^2 = \frac{\gamma p_0}{\rho_0}.
\]

För svängningar i gaser (ljud) gäller efter linjärisering att

\[
\begin{cases}
\frac{1}{\gamma} \frac{\partial \tilde{p}}{\partial t} + v_0 \frac{\partial \tilde{v}}{\partial x} = 0, \\
v_0 \frac{\partial \tilde{v}}{\partial t} + \frac{p_0}{\rho_0} \frac{\partial \tilde{p}}{\partial x} = 0,
\end{cases}
\]

\[
\tilde{p} = \gamma \tilde{\rho}.
\]

där \(\tilde{p} = \frac{p - p_0}{p_0} \) och \(\tilde{v} = \frac{v}{v_0} \).
Vektoranalys

Gauss formel \[\int_{\Omega} \nabla \cdot u \, dV = \oint_{\partial \Omega} u \cdot dS. \]

Stokes formel \[\int_{S} \nabla \times u \cdot dS = \oint_{\partial S} u \cdot d\mathbf{r}. \]

Greens formel I \[\int_{\Omega} \nabla \cdot \nabla u \, dV = \oint_{\partial \Omega} u \, \partial n \, dS - \int_{\Omega} u \nabla \cdot \nabla \Delta V \, dV. \]

Greens formel II \[\int_{\Omega} (u \nabla \Delta v - v \nabla \Delta u) \, dV = \oint_{\partial \Omega} (u \partial v \partial n - v \partial u \partial n) \, dS. \]

Laplaceoperatorn i cylindriska koordinater \[\Delta = \frac{1}{r} \nabla \cdot \nabla = \nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}. \]

Laplaceoperatorn i sfäriska koordinater \[\Delta = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial \varphi^2} \frac{1}{\sin^2(\theta)}, \]
\[\Lambda = \frac{\partial}{\partial \rho} (1 - \rho^2) \frac{\partial}{\partial \rho} + \frac{1}{1 - \rho^2} \frac{\partial^2}{\partial \varphi^2} \text{ om } \rho = \cos(\theta), \]
\(\theta \text{ polardistans, } 0 < \theta < \pi, \varphi \text{ längdgrad, } 0 \leq \varphi < 2\pi. \)

Ortogonalutvecklingar \[(u \mid v) = \int_{I} u(x) v(x) w(x) \, dx, \quad \|u\|^2 = (u \mid u). \]

Om \((\varphi_j \mid \varphi_k) = 0 \), \(j \neq k \), så \(u = \sum c_k(u) \varphi_k \) med \(c_k(u) = \frac{(\varphi_k \mid u)}{\rho_k} \), där \(\rho_k = (\varphi_k \mid \varphi_k) \).

Parseval \[(u \mid v) = \sum \frac{1}{\rho_k} (\varphi_k \mid u) (\varphi_k \mid v) = \sum \rho_k c_k(u) c_k(v). \]

Sturm-Liouville \[Au = \frac{1}{w}(- \nabla \cdot (p \nabla u) + q u). \]

Speciella funktioner

Gammafunktionen och Betafunktionen \[\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} \, dt, \quad \Gamma(x + 1) = x \Gamma(x), \quad \Gamma(n + 1) = n!, \quad \Gamma(1/2) = \sqrt{\pi}, \]

\[B(p, q) = \frac{\Gamma(p) \Gamma(q)}{\Gamma(p + q)}. \]
Felfunktion/Error function

\[
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt, \quad \int_0^\infty e^{-t^2} \, dt = \frac{\sqrt{\pi}}{2}.
\]

Beselfunktioner

\[
e^{ir \sin(\theta)} = \sum_{n=-\infty}^{\infty} I_n(r) e^{i n \theta},
\]

\[
J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(nz - n\theta)} \, d\theta, \quad n \text{ heltal},
\]

\[
J_v(z) = \left(\frac{z}{2}\right)^v \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(k+v+1)} \left(-\frac{z^2}{4} \right)^k, \quad v \neq -1, -2, \ldots
\]

Bessels differentialekvation

\[u'' + \frac{1}{r} u' + \left(\frac{\lambda - \nu^2}{r^2} \right) u = 0\]

har den allmänna lösningen

\[
\begin{cases}
 a J_v(\sqrt{\lambda} r) + b Y_v(\sqrt{\lambda} r) & \text{om } \lambda > 0, \\
 a r^\nu + b r^{-\nu} & \text{om } \lambda = 0, \nu \neq 0, \\
 a + b \ln(r) & \text{om } \lambda = \nu = 0.
\end{cases}
\]

Normuttryck

\[
\int_0^R \left| J_v \left(\frac{r}{R} \alpha_{nk} \right) \right|^2 r \, dr = \frac{R^2}{2} J_{v+1}(\alpha_{nk})^2 = \frac{R^2}{2} J_v'(\alpha_{nk})^2.
\]

Nollställen till Beselfunktioner \(J_n(x) \), \(J_n(\alpha_{nk}) = 0 \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,405</td>
<td>3,832</td>
<td>5,136</td>
<td>6,380</td>
<td>7,588</td>
<td>8,771</td>
<td>9,936</td>
<td>11,086</td>
<td>12,225</td>
<td>13,354</td>
<td>14,475</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5,520</td>
<td>7,016</td>
<td>8,417</td>
<td>9,761</td>
<td>11,065</td>
<td>12,339</td>
<td>13,589</td>
<td>14,821</td>
<td>16,038</td>
<td>17,241</td>
<td>18,433</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8,634</td>
<td>10,173</td>
<td>11,620</td>
<td>13,013</td>
<td>14,372</td>
<td>15,700</td>
<td>17,004</td>
<td>18,288</td>
<td>19,554</td>
<td>20,807</td>
<td>22,047</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11,791</td>
<td>13,324</td>
<td>14,796</td>
<td>16,223</td>
<td>17,616</td>
<td>18,980</td>
<td>20,321</td>
<td>21,641</td>
<td>22,945</td>
<td>24,234</td>
<td>25,509</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14,931</td>
<td>16,471</td>
<td>17,960</td>
<td>19,409</td>
<td>20,827</td>
<td>22,218</td>
<td>23,586</td>
<td>24,935</td>
<td>26,267</td>
<td>27,584</td>
<td>28,887</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18,071</td>
<td>19,616</td>
<td>21,117</td>
<td>22,583</td>
<td>24,039</td>
<td>25,430</td>
<td>26,820</td>
<td>28,191</td>
<td>29,546</td>
<td>30,885</td>
<td>32,212</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21,212</td>
<td>22,760</td>
<td>24,270</td>
<td>25,748</td>
<td>27,199</td>
<td>28,627</td>
<td>30,034</td>
<td>31,425</td>
<td>32,796</td>
<td>34,154</td>
<td>35,500</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>24,352</td>
<td>25,904</td>
<td>27,421</td>
<td>28,908</td>
<td>30,371</td>
<td>31,812</td>
<td>33,233</td>
<td>34,657</td>
<td>36,026</td>
<td>37,400</td>
<td>38,762</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27,493</td>
<td>29,047</td>
<td>30,569</td>
<td>32,065</td>
<td>33,537</td>
<td>34,989</td>
<td>36,422</td>
<td>37,839</td>
<td>39,240</td>
<td>40,628</td>
<td>42,004</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30,635</td>
<td>32,190</td>
<td>33,716</td>
<td>35,219</td>
<td>36,699</td>
<td>38,160</td>
<td>39,603</td>
<td>41,031</td>
<td>42,444</td>
<td>43,844</td>
<td>45,232</td>
<td></td>
</tr>
</tbody>
</table>

Nollställen till \(J_n'(x) \), \(J_n'(\alpha_{nk}) = 0 \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,000</td>
<td>1,841</td>
<td>3,054</td>
<td>4,201</td>
<td>5,317</td>
<td>6,416</td>
<td>7,501</td>
<td>8,578</td>
<td>9,647</td>
<td>10,711</td>
<td>11,771</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3,853</td>
<td>5,331</td>
<td>6,706</td>
<td>8,015</td>
<td>9,282</td>
<td>10,520</td>
<td>11,735</td>
<td>12,932</td>
<td>14,115</td>
<td>15,287</td>
<td>16,448</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7,016</td>
<td>8,536</td>
<td>9,969</td>
<td>11,346</td>
<td>12,682</td>
<td>13,987</td>
<td>15,268</td>
<td>16,529</td>
<td>17,774</td>
<td>19,005</td>
<td>20,223</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10,173</td>
<td>11,706</td>
<td>13,170</td>
<td>14,586</td>
<td>15,964</td>
<td>17,313</td>
<td>18,637</td>
<td>19,942</td>
<td>21,229</td>
<td>22,501</td>
<td>23,761</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13,324</td>
<td>14,864</td>
<td>16,347</td>
<td>17,789</td>
<td>19,196</td>
<td>20,575</td>
<td>21,932</td>
<td>23,268</td>
<td>24,587</td>
<td>25,891</td>
<td>27,182</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16,471</td>
<td>18,015</td>
<td>19,513</td>
<td>20,972</td>
<td>22,401</td>
<td>23,804</td>
<td>25,184</td>
<td>26,545</td>
<td>27,889</td>
<td>29,219</td>
<td>30,534</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19,616</td>
<td>21,164</td>
<td>22,672</td>
<td>24,145</td>
<td>25,590</td>
<td>27,010</td>
<td>28,410</td>
<td>29,791</td>
<td>31,155</td>
<td>32,505</td>
<td>33,842</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>22,760</td>
<td>24,311</td>
<td>25,826</td>
<td>27,310</td>
<td>28,768</td>
<td>30,203</td>
<td>31,618</td>
<td>33,015</td>
<td>34,397</td>
<td>35,764</td>
<td>37,118</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>25,904</td>
<td>27,457</td>
<td>28,978</td>
<td>30,470</td>
<td>31,938</td>
<td>33,385</td>
<td>34,813</td>
<td>36,224</td>
<td>37,620</td>
<td>39,002</td>
<td>40,371</td>
<td></td>
</tr>
</tbody>
</table>
Sfäriska Beselfunktioner

Differentialekvationen

\[u'' + \frac{2}{z} u' + \left(\lambda - \frac{\ell(\ell + 1)}{z^2} \right) u = 0 \]

har den allmänna lösningen

\[
\begin{cases}
 a j_{\ell}(\sqrt{\lambda} z) + b y_{\ell}(\sqrt{\lambda} z) & \text{om } \lambda > 0, \\
 a z^\ell + b z^{-\ell-1} & \text{om } \lambda = 0, \ell \neq -1/2, \\
 a + b \ln(z) & \text{om } \lambda = 0, \ell = -1/2,
\end{cases}
\]

där

\[j_{\ell}(z) = \sqrt{\frac{\pi}{2z}} J_{\ell + 1/2}(z), \quad y_{\ell}(z) = \sqrt{\frac{\pi}{2z}} Y_{\ell + 1/2}(z). \]

Speciellt är

\[j_0(z) = \frac{\sin(z)}{z}, \quad j_1(z) = \frac{\sin(z) - z \cos(z)}{z^2}, \]
\[y_0(z) = -\frac{\cos(z)}{z}, \quad y_1(z) = -\frac{\cos(z) + z \sin(z)}{z^2}. \]

Legendrefunktioner

Legendrepolynomen \((P_{\ell})_0^\infty\) är ortogonala i \(L^2(I)\), \(I = (-1, 1)\).

Legendres differentialekvation

\[\frac{d}{dx} \left((1-x^2) \frac{du}{dx} \right) + \ell(\ell + 1) u = 0, \quad \ell = 0, 1, 2, \ldots \]

har allmänna lösningen

\[a P_{\ell}(x) + b Q_{\ell}(x) \]

där \(Q_{\ell}\) ej är begränsad i \((-1, 1)\) och

\[P_{\ell}(x) = \frac{1}{2\ell!} D^\ell (x^2 - 1)^\ell. \]

Rekursionsformel för Legendrepolynom:

\[P_0(x) = 1, \quad P_1(x) = x, \quad P_{\ell+1}(x) = \frac{2\ell + 1}{\ell + 1} x P_\ell(x) - \frac{\ell}{\ell + 1} P_{\ell-1}(x). \]

Associerade Legendreekvationen

\[\frac{d}{dx} \left((1-x^2) \frac{du}{dx} \right) - \frac{m^2}{1-x^2} u + \ell(\ell + 1) u = 0 \]

har allmänna lösningen

\[a P_{\ell}^m(x) + b Q_{\ell}^m(x) \]

där \(Q_{\ell}^m\) ej är begränsad och

\[P_{\ell}^m = (1-x^2)^{m/2} D^m P_\ell(x). \]
Greenfunktioner
Fundamentallösningar till Laplaceoperatorn \((-\Delta K = \delta)\)

\[
K(x) = \frac{1}{2\pi} \ln|x| \quad \text{i } \mathbb{R}^2,
\]

\[
K(x) = \frac{1}{4\pi|x|} \quad \text{i } \mathbb{R}^3.
\]

Poissonkärnor

\[
P(r, \theta) = \frac{1}{2\pi} \frac{1 - r^2}{1 + r^2 - 2r \cos(\theta)} \quad \text{(enhetscirkeln)},
\]

\[
P(x, y) = \frac{1}{\pi} \frac{y}{x^2 + y^2} \quad \text{(halvplanet } y > 0).\]

Greenfunktion för Dirichlets problem

\[
\begin{cases}
-\Delta_x G(x, \alpha) = \delta_\alpha(x), & x \in \Omega, \\
G(x, \alpha) = 0, & x \in \partial \Omega.
\end{cases}
\]

Om \(-\Delta u = f \text{ i } \Omega, u = g \text{ på } \partial \Omega\) så

\[
u(x) = \int_\Omega G(x, \alpha)f(\alpha) \, dV_\alpha - \int_{\partial \Omega} \frac{\partial}{\partial n_\alpha}(x, \alpha)g(\alpha) \, dS_\alpha.
\]

Konjugerade punkter med avseende på cirkeln (sfären) \(|x| = \rho\)

\[
|\alpha| |\tilde{\alpha}| = \rho^2,
\]

\[
|x - \alpha| = \frac{|\alpha| |x - \tilde{\alpha}|}{\rho} \quad \text{då } |x| = \rho.
\]

Värmeledning

\[
\begin{cases}
G(x, t) = \frac{1}{\sqrt{4\pi at}} e^{-x^2/4at}, & x \in \mathbb{R}, \ t > 0, \\
\frac{\partial}{\partial t} G - \frac{\partial^2}{\partial x^2} G = 0, & x \in \mathbb{R}, \ t > 0, \\
G(x, 0) = \delta(x), & x \in \mathbb{R}.
\end{cases}
\]

Vågutbredning

d’Alembert

\[
\begin{cases}
u(x, t) = \frac{1}{2} \left(g(x + ct) + g(x - ct)\right) + \frac{1}{2c} \int_{x-ct}^{x+ct} h(y) \, dy, \\
g(x) = u(x, 0), \ h(x) = u_t(x, 0).
\end{cases}
\]

Karakteristiker

\[
\begin{cases}
a_{11} u_{xx}'' + 2a_{12} u_{xy}'' + a_{22} u_{yy}'' + F(x, y, u, u_x, u_y) = 0, \\
a_{11} dy^2 - 2a_{12} dx \, dy + a_{22} dx^2 = 0.
\end{cases}
\]

Kvasilinjära

\[
\begin{cases}
x \frac{\partial u}{\partial x} + \beta \frac{\partial u}{\partial y} = f, \\
u(x_0, y_0) = u_0(x_0, y_0), \text{ för } g(x_0, y_0) = 0,
\end{cases}
\]

\[
\begin{cases}
\dot{x} = x, \ x(0) = x_0, \\
\dot{y} = y, \ y(0) = y_0,
\end{cases}
\]

\[
\begin{cases}
\dot{z} = f, \ z(0) = u_0(x_0, y_0).
\end{cases}
\]
Fouriertransformer

\[\mathcal{F} f(\xi) = \hat{f}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} f(x) \, dx, \]

\[(\mathcal{F}^{-1} \hat{f})(x) = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \hat{f}(\xi) \, d\xi. \]

Parsevals formel

\[\int_{-\infty}^{\infty} f(x) g(x) \, dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\xi) \hat{g}(\xi) \, d\xi. \]

<table>
<thead>
<tr>
<th>(\mathcal{F})</th>
<th>(\lambda f(x) + \mu g(x))</th>
<th>(\lambda \hat{f}(\xi) + \mu \hat{g}(\xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(f(ax))</td>
<td>(\frac{1}{</td>
</tr>
<tr>
<td>(2)</td>
<td>(e^{i\xi x} f(x))</td>
<td>(\hat{f}(\xi - \xi_0))</td>
</tr>
<tr>
<td>(3)</td>
<td>(f'(x))</td>
<td>(i\xi \hat{f}(\xi))</td>
</tr>
<tr>
<td>(4)</td>
<td>(x f(x))</td>
<td>(i \frac{d}{d\xi} \hat{f}(\xi))</td>
</tr>
<tr>
<td>(5)</td>
<td>((f * g)(x))</td>
<td>(\hat{f}(\xi) \hat{g}(\xi))</td>
</tr>
<tr>
<td>(6)</td>
<td>(\delta)</td>
<td>1</td>
</tr>
<tr>
<td>(7)</td>
<td>1</td>
<td>(2\pi \delta)</td>
</tr>
<tr>
<td>(8)</td>
<td>(e^{-x} \Theta(x))</td>
<td>(\frac{1}{1 + i\xi})</td>
</tr>
<tr>
<td>(9)</td>
<td>(e^{-</td>
<td>x</td>
</tr>
<tr>
<td>(10)</td>
<td>(\frac{1}{1 + x^2})</td>
<td>(\pi e^{-</td>
</tr>
<tr>
<td>(11)</td>
<td>(e^{-x^2})</td>
<td>(\sqrt{\pi} e^{-\xi^2/4})</td>
</tr>
<tr>
<td>(12)</td>
<td>(\Theta(x + 1) - \Theta(x - 1))</td>
<td>(\frac{2 \sin(\xi)}{\xi})</td>
</tr>
<tr>
<td>(13)</td>
<td>(\Theta(x))</td>
<td>(\frac{1}{i} \mathcal{P}\left(\frac{1}{\xi}\right) + \pi \delta)</td>
</tr>
</tbody>
</table>

\[\Theta(x) = \begin{cases}
1, & x > 0, \\
0, & x \leq 0,
\end{cases} \quad \Theta' = \delta, \quad \text{sgn}(x) = \begin{cases}
1, & x > 0, \\
-1, & x < 0,
\end{cases} \quad f(x) \delta = f(0) \delta, \quad f(x) \delta' = f(0) \delta' - f'(0) \delta. \]
Laplace transform

\[\mathcal{L}f(s) = \mathcal{L}_{II}f(s) = \int_{-\infty}^{\infty} e^{-st} f(t) \, dt, \quad \alpha < \Re s < \beta, \quad s = \sigma + i\omega, \]

\[f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} e^{st} F(s) \, ds, \quad \alpha < \sigma < \beta, \]

\[\mathcal{F}f(\omega) = \mathcal{L}_{II}f(i\omega), \]

\[\mathcal{L}_{I}f = \mathcal{L}_{II}(\theta f). \]

<table>
<thead>
<tr>
<th>(\mathcal{L}_{II} \rightarrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda f(t) + \mu g(t))</td>
</tr>
<tr>
<td>(f(at))</td>
</tr>
<tr>
<td>(f(t - t_0))</td>
</tr>
<tr>
<td>(e^{st} f(t))</td>
</tr>
<tr>
<td>(f'(t))</td>
</tr>
<tr>
<td>(tf(t))</td>
</tr>
<tr>
<td>((f * g)(t))</td>
</tr>
<tr>
<td>(\theta(t)f'(t))</td>
</tr>
<tr>
<td>(\delta)</td>
</tr>
<tr>
<td>(\theta(t))</td>
</tr>
<tr>
<td>(\theta(t) - 1)</td>
</tr>
<tr>
<td>(t^k e^{st} \theta(t))</td>
</tr>
<tr>
<td>(\sin(bt) \theta(t))</td>
</tr>
<tr>
<td>(\cos(bt) \theta(t))</td>
</tr>
<tr>
<td>(e^{-t^2})</td>
</tr>
<tr>
<td>(t^{\alpha-1} \theta(t))</td>
</tr>
<tr>
<td>(\frac{</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{\pi t}} e^{-a^2/4t} \theta(t))</td>
</tr>
</tbody>
</table>
Fourierserier

\[f(t) = \sum_{k=\pm \infty} c_k e^{i k \omega t} = c_0 + \sum_{k=1}^\infty a_k \cos k \omega t + b_k \sin k \omega t, \quad \omega T = 2\pi, \]

\[c_k = \frac{1}{T} \int_{\text{period}} e^{-i k \omega t} f(t) \, dt, \]

\[a_k = \frac{2}{T} \int_{\text{period}} \cos(k \omega t) f(t) \, dt, \quad b_k = \frac{2}{T} \int_{\text{period}} \sin(k \omega t) f(t) \, dt, \]

\[\begin{cases} a_k = c_k + c_{-k} , \\ b_k = i(c_k - c_{-k}) \end{cases} \]

\[\begin{cases} c_k = \frac{1}{2}(a_k - ib_k) , \\ c_{-k} = \frac{1}{2}(a_k + ib_k) \end{cases} \]

Parsevals formel

\[\frac{1}{T} \int_{\text{period}} f(t) g(t) \, dt = \sum_{k=\pm \infty} c_k(f) c_k(g), \]

\[\frac{1}{T} \int_{\text{period}} |f(t)|^2 \, dt = \sum_{k=\pm \infty} |c_k|^2 , \quad \frac{1}{T} \int_{\text{period}} |f(t)|^2 \, dt = |c_0|^2 + \frac{1}{2} \sum_{k=1}^\infty (|a_k|^2 + |b_k|^2). \]

Halvperiodutvecklingar

\[f(x) = c_0 + \sum_{k=1}^\infty \alpha_k \cos \left(\frac{k\pi}{L} x \right), \quad \beta_k \sin \left(\frac{k\pi}{L} x \right), \]

\[\alpha_k = \frac{2}{L} \int_0^L f(x) \cos \left(\frac{k\pi}{L} x \right) \, dx, \quad \beta_k = \frac{2}{L} \int_0^L f(x) \sin \left(\frac{k\pi}{L} x \right) \, dx, \]

\[c_0 = \frac{1}{L} \int_0^L f(x) \, dx. \]

Nägra trigonometriska formler

\[\cos(x + \beta) = \cos(x) \cos(\beta) - \sin(x) \sin(\beta), \]

\[\sin(x + \beta) = \sin(x) \cos(\beta) + \cos(x) \sin(\beta), \]

\[\cos(x) + \cos(\beta) = 2 \cos \left(\frac{x + \beta}{2} \right) \cos \left(\frac{x - \beta}{2} \right), \]

\[\cos(x) - \cos(\beta) = -2 \sin \left(\frac{x + \beta}{2} \right) \sin \left(\frac{x - \beta}{2} \right), \]

\[\sin(x) + \sin(\beta) = 2 \sin \left(\frac{x + \beta}{2} \right) \cos \left(\frac{x - \beta}{2} \right), \]

\[\sin(x) - \sin(\beta) = 2 \cos \left(\frac{x + \beta}{2} \right) \sin \left(\frac{x - \beta}{2} \right), \]

\[a \cos(x) + b \sin(x) = c \cos(x - \gamma), \quad c = \sqrt{a^2 + b^2}, \quad \tan(\gamma) = b/a. \]