The open mapping theorem

Theorem Open mapping theorem Let X and Y be Banach spaces and suppose that the operator $L \in \mathcal{L}(X, Y)$ is surjective. Then $L(O)$ is open for any open set O in X.

Exercise 1 Show that if $L : X \rightarrow Y$ is bijective and linear then the inverse is also linear.

Recall that the function f is continuous if and only if the inverse image $f^{-1}(O)$ is an open set whenever O is open. With this in mind the following theorem is an important consequence:

Theorem Inverse mapping theorem. Let X and Y be Banach spaces and suppose that the operator $L \in \mathcal{L}(X, Y)$ is invertible. Then the inverse is linear and bounded.

Exercise 2 Prove the inverse mapping theorem.

Exercise 3 Give example of bounded, linear operator $L \in \mathcal{L}(X, X)$ that is injective but not surjective. Observe that this is not possible if X is finite dimensional. If a quadratic matrix has a left inverse it has automatically a right inverse also and is hence invertible.

Exercise 4 Let X be a Banach space with two different norms $\| \cdot \|_1$ and $\| \cdot \|_2$ and suppose that there exists a constant C such that $\|x\|_1 \leq C \|x\|_2$. Show that the norms are equivalent.

Exercise 5 Show that the identity operator from $C([0, 1], \| \cdot \|_{\infty})$ to $C([0, 1], \| \cdot \|_1)$ is a bounded operator but that the identity operator from $C([0, 1], \| \cdot \|_1)$ to the space $C([0, 1], \| \cdot \|_{\infty})$ is unbounded. Explain why this does not contradict the inverse mapping theorem.

Principle of uniform boundedness

Theorem Principle of uniform boundedness. Let X and Y be Banach spaces and let A be a family of bounded linear operators from X to Y. If, for every $x \in X$,

$$\sup_{L \in A} \|L(x)\|_Y < \infty$$

then

$$\sup_{L \in A} \|L\| < \infty.$$

Also this theorem have alternative formulations. Important is the following:

Theorem Banach-Steinhaus. Let X and Y be Banach spaces and let $L_n \in \mathcal{L}(X, Y)$ be
a sequence such that for all \(x \in X \), \(\lim_{n \to \infty} L_n(x) \) exists. Define \(L : X \to Y \) by \(L(x) = \lim_{n \to \infty} L_n(x) \), then \(L \) is a bounded, linear operator.

Exercise 6 Prove the Banach-Steinhaus theorem using the uniform boundedness theorem.

Observe that the theorem gives a pointwise limit of \(L_n \), but it does not say that \(\|L_n - L\| \to 0 \) or \(\|L_n\| \to \|L\| \).

Exercise 7 Consider \(L_n : \ell^2 \to \mathbb{R} \) given by \(L_n(x) = x_n \). Find \(L \) and compute \(\|L_n - L\| \) and \(\|L\| \).

Let \(X \) be a Banach space and let \(x_n \in X \) be a sequence. Recall that the sequence \(x_n \) is weakly convergent to \(x \in X \) if \(\xi(x_n) \to \xi(x) \) for all \(\xi \in X^* \). Now introduce the notation that the sequence \(x_n \) is weakly convergent if the sequence \(\xi(x_n) \) is convergent (to a real number) for all \(\xi \in X^* \). Note that this definition does not include any limit in \(X \). A consequence of Banach-Steinhaus is the following:

Theorem Let \(X \) be a reflexive Banach spaces. Then any weakly convergent sequence \(x_n \) in \(X \) has a limit, i.e there exists an \(x \in X \) such that \(x_n \) converges weakly to \(x \).

Exercise 8 Given \(x \in X \) then for \(\xi \in X^* \), \(\hat{x}(\xi) = \xi(x) \) defines a function from \(X^* \) to \(\mathbb{R} \). Show that \(\hat{x} \) is linear, bounded, i.e. \(\hat{x} \in X^{**} \). Also show that \(\|\hat{x}\|_{X^{**}} = \|x\|_X \).

Exercise 9 Show that the mapping \(x \mapsto \hat{x} \) from \(X \) to \(X^{**} \) is linear, injective and isometric.

If the mapping also is surjective then \(X \) is called reflexive and then any element in \(X^{**} \) can be identified with an element in \(X \). Every Hilbert space is reflexive according to the Riesz representation theorem.

Exercise 10 Prove the theorem about that there exists a limit point of a weakly convergent sequence.

On the other hand one says that a sequence \(\xi_n \in X^* \) is weakly *-convergent if \(\xi_n(x) \) converges (to a real number) for all \(x \in X \) and the sequence is weakly *-convergent to \(\xi \in X^* \) if \(\xi_n(x) \) converges to \(\xi(x) \) for all \(x \in X \).

Theorem Let \(X \) be a Banach spaces. Then any weakly *-convergent sequence \(\xi_n \) in \(X^* \) has a limit, i.e there exists an \(\xi \in X^* \) such that \(\xi_n \) is weakly *-convergent to \(\xi \).

Note that this theorem does not require that the Banach space is reflexive.

Exercise 11 Prove the theorem.