5.25. Sätt rätblocket i ett hon-system med ena hörnet i origo.

Triangel: Area:

\[\overline{OP}_2 \times \frac{ab}{2} = A \]

\[\overline{OP}_3 \times \frac{ac}{2} = B \]

\[\overline{OP}_4 \times \frac{bc}{2} = C \]

\[\overline{PP}_3 = D \]

\[\overline{PP}_3 \text{ spänns upp av } \overline{PP}_2 = \overline{P_2P_3} = (-a, 0, 0) \]

Triangelarea = \frac{1}{2} parallelogramarea = \frac{1}{2} \text{ vektorprodukt}

\[D = \frac{1}{2} |(-a, b, 0) \times (-a, 0, c)| = \frac{1}{2} \sqrt{a^2 b \cdot c^2 + a^2 c \cdot b^2 + b^2 c^2} = \]

\[\frac{1}{2} \sqrt{(2C)^2 + (2B)^2 + (2A)^2} = \sqrt{C + B + A}^2 \]

Kvadrering ger \[D = \sqrt{A^2 + B^2 + C^2} \]
7.23 f. Lös först \(AX = 0 \):

\[
\begin{align*}
\begin{cases}
 x_1 - x_2 + 3x_3 + x_4 - x_5 &= 0 \\
 x_1 - x_3 + x_4 + 3x_5 &= 0 \\
 2x_1 + 2x_2 + 3x_3 + 7x_4 + 7x_5 &= 0 \\
 3x_1 - 2x_2 + 8x_3 + 4x_4 &= 0 \\
 \end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
 x_1 - x_2 + 3x_3 + x_4 - x_5 &= 0 \\
 \frac{1}{2}x_1 - x_3 + x_4 + 3x_5 &= 0 \\
 \frac{3}{2}x_1 - 3x_3 + 3x_4 + 9x_5 &= 0 \\
 x_1 - x_3 + x_4 + 3x_5 &= 0 \\
 \end{cases}
\end{align*}
\]

\[
x_1 = t - 5 - 3r - 3t - 5 + r
\]

\[
x_2 = t - 5 - 3r
\]

\[
x_3 = t
\]

\[
x_4 = 5
\]

\[
x_5 = r
\]

Vi ser: nulldim \(A = 3 \)

\[
\text{rang } A = 5 - 3 = 2
\]

eller direkt

\[
\text{från pivöelementer}
\]

bas för nullrummet:

\[
\begin{align*}
 (-2, -3, 0, 0) \\
 (-2, 1, 0, 0) \\
 (-2, 1, 1, 0, 0)
\end{align*}
\]
725. vrang A = max antal lin. oberoende kolonner i A.

\[N = (x_1, x_2, x_3, \ldots, x_n)^T \] (kolonnmatrix) \implies

\[
A = NN^T =
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{pmatrix}
\begin{pmatrix}
 x_1 & x_2 & x_3 & \cdots & x_n \\
 x_2 & x_1 & x_2 & \cdots & x_n \\
 x_3 & x_2 & x_3 & \cdots & x_n \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_n & x_{n-1} & x_{n-2} & \cdots & x_1
\end{pmatrix}
\]

Vi ser att tio kolonner i A blir \(x_1 \cdot N\)

2:a blir \(x_2 \cdot N\), 3:e blir \(x_3 \cdot N\) osv.

\[\implies \text{ Alla kolonner multiplar av } N \]

\[\implies \text{ Bara en lin. oberoende} \]

svaret är vrang A = 1

b. Vi eliminerar för att hitta pivåelementer.

Med enklast koefficienter:

\[
\begin{pmatrix}
1-a & -3 & a \\
2 & 0 & a \\
3 & a & -a \\
\end{pmatrix} \iff \begin{pmatrix}
1-a & -3 & a \\
0 & 2a & a+4 & -a \\
0 & 3a & -a \\
\end{pmatrix} \iff \begin{pmatrix}
1-a & -3 & a \\
0 & 2a & a+4 & -a \\
0 & 0 & -3a-2 & 0 \\
\end{pmatrix}
\]

Antalet pivåelement beror nu på vad a är.

\[
a \neq 0 \Rightarrow a \neq -\frac{2}{3} \Rightarrow \quad \text{räng } A = 3
\]

\[
a = 0 \Rightarrow \quad \text{räng } A = 2
\]

\[
a = -\frac{2}{3} \Rightarrow \quad \text{räng } A = 2
\]
8.7 Linjer på parameterfråm: sätt in en parameter,

\[x = t \Rightarrow y = 1 \Rightarrow z = -2t \]

\[\Rightarrow \text{linje} \quad (x,y,z) = t(1,1,-2) \]

Kolonnerna i avbildningsmatrixen = bilderna av basvektorn, som skall projiceras på

\[\text{ex.} \ (4,1,-2) \]

\[F(e_1) = \frac{(1,0,0) \cdot (4,1,-2)}{(1,1,-2)^2} \cdot (1,1,-2) = \frac{1}{6} (1,1,-2) \]

\[F(e_2) = \frac{(0,1,0) \cdot (4,1,-2)}{(1,1,-2)^2} \cdot (1,1,-2) = \frac{1}{6} (1,1,-2) \]

\[F(e_3) = \frac{(0,0,1) \cdot (4,1,-2)}{(1,1,-2)^2} \cdot (1,1,-2) = -\frac{2}{6} (1,1,-2) = \frac{1}{6} (2,-2,4) \]

Således: \(Y = AX \) där \(A = \frac{1}{6} \begin{pmatrix} 1 & 1 & -2 \\ 2 & -2 & 4 \end{pmatrix} \)

8.24 Rängen = dim av värderänten = 1

Vi ser också direkt att alla kolonnen i A är parallella.

(by line)
834. Linjens punkter är precis de som speglas på sig själva => $\mathbf{y} = -\mathbf{y}$

\[
\begin{align*}
x_1 &= \frac{1}{3}(3x_1 - 4x_2) \\
x_2 &= \frac{1}{3}(-4x_1 - 3x_2)
\end{align*}
\Rightarrow
\begin{align*}
5x_1 &= 3x_1 - 4x_2 \\
5x_2 &= -4x_1 - 3x_2
\end{align*}
\Rightarrow
\begin{align*}
-2x_1 - 4x_2 &= 0 \\
-4x_1 - 8x_2 &= 0
\end{align*}
\Rightarrow
\begin{align*}
-2x_1 - 4x_2 &= 0 \Rightarrow x_1 + 2x_2 &= 0
\end{align*}

Svar: Linjen $(x_1, x_2) = (t, 2t)$, eller på effektiv form:

$-2x_1 - 4x_2 = 0 \Rightarrow x_1 + 2x_2 = 0$
8.38. Metod 1: Om A är en matris, så har

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} A(\vec{0}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad A(\vec{0}) = A(\vec{1}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Om vi tänker på hur matrismultiplikation fungerar

så innebör detta: $A(\vec{0} + \vec{1}) = (\vec{0} + \vec{1})$, dvs.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}.$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$\Rightarrow A^2 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

Inversa av bildningsmatris = A^{-1}

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$\Rightarrow A^2 = \frac{1}{2} A^{-1} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix}$$

$$\Rightarrow A = \frac{1}{2} A^{-1} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix}$$
8.38. Metod 2: Kolonnvektorerna i $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ bilden av kolonnvektorerna

\[\begin{align*}
(1,0,0) &\rightarrow (1,0) \\
(0,1,0) &\rightarrow (2,0) \\
(1,0,1) &\rightarrow ? \quad (1,0,1)= (1,1)-(0,1) \quad \Rightarrow \\
F(1,0,1) &= F(1,1)-F(0,1) = (1,1)-(2,0) = (-1,1,0) \\
\Rightarrow A &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{Invers som ovan, eller:} \\
\begin{align*}
(1,1,0) &\rightarrow (1,0) \quad \text{(Inversen "kar tillhaka" vektorerna vi fick givna i uppgiften)} \\
(2,0,1) &\rightarrow (0,1,0) \\
(-1,1,0) &\rightarrow (0,1) \\
(1,0,0) &= \frac{1}{2}(1,1,0)-(-1,1,0) \quad \Rightarrow \\
F(1,0,0) &= \frac{1}{2} F(1,1,0)-\frac{1}{2} F(-1,1,0) = \frac{1}{2}(1,9,0)-\frac{1}{2}(0,9,1) = \frac{1}{2}(1,0,-1) \\
(1,1,0) &= (1,1,0)-(1,0,0) \quad \Rightarrow \\
F(1,1,0) &= F(1,0,0)-F(0,1,0) = (1,0,0)-\frac{1}{2}(1,0,-1) = \frac{1}{2}(1,0,1) \\
(0,1,0) &= (2,0,1)-2(0,1,0) \quad \Rightarrow \\
F(0,1,0) &= F(2,0,1)-2F(0,1,0) = (2,0,1)-(1,0,1) = (-1,0,1) \\
\Rightarrow A &= \begin{pmatrix} 1 & 1 & -2 \\ 0 & -1 & 2 \end{pmatrix} \quad \text{(Sambanden ovan kan också beräknas i ett ekssystem.)}
\end{align*}\]