1.1 implicitplot(x^2+4*x+2*y^2-12*y = 18, x = -10 .. 5,y = -2 .. 10); 1.2 implicitplot(64*x^2-36*y^2-2304 = 0, x = -15 .. 15,y = -15 .. 15); 1.3 plot([x, -2*x^2+1], x = -1.2 .. 1.2); 1.4 implicitplot([x-2*y = 5, x = 2, (x-2)^2+y^2 = 9],x = -4 .. 6, y = -5 .. 5); 1.5 implicitplot(x^2+y^2 = 1, x = -10 .. 10,y = -10 .. 10); 1.6 implicitplot(x^2+y^2 = 1, x = -10 .. 10,y = -10 .. 10, grid=[100,100]); 1.7 implicitplot((x-2)^2+(y+1)^2 = 25, x = -5 .. 10,y = -8 .. 7, filledregions); 1.8 plot(sqrt(2*cos(2*v)), v = 0 .. 2*Pi, coords = polar, numpoints = 1000); 1.9 implicitplot3d(x+y+z = 1, x = -1 .. 1, y = -1 .. 1,z = -1 .. 1); 1.10 implicitplot3d([x=0,y=0,z=0],x=-5..5,y=-5..5,z=-5..5); implicitplot3d([x+y+z = 1, x = 0, y-z = 1], x = -2 .. 2,y = -1 .. 1, z = -1 .. 1); 1.11 implicitplot3d(r = 1, r = 0 .. 1.5, v = 0 .. 2* Pi,z = -2 .. 2,coords =cylindrical); 1.12 implicitplot3d([r = 1, v = 3*Pi*1/4, z = 1, r = 0 .. 2,v = 0 .. 2*Pi, z = 0 .. 2,coords =cylindrical, grid = [10, 20, 20]); 1.13 implicitplot3d(r = v, r = 0 .. 10, v = 0 .. 4*Pi,z = 0 .. 10,coords =cylindrical, grid = [15, 40, 15]); 1.14 implicitplot3d(r = 1, r = 0 .. 1.1, u = 0 .. 2*Pi,v = 0 .. Pi,coords = spherical, grid = [10,15,15]); 1.15 implicitplot3d([u = Pi, v = (1/4)*Pi], r = 0 ..2,u = 0 .. 2*Pi, v = 0 .. (1/2)*Pi,coords = spherical,grid = [10,15,15]); 1.16 implicitplot3d(x^2+y^2-z^2 = 0, x = -5 .. 5, y = -5 .. 5,z = -5 .. 5, grid = [20, 20, 20]); 1.17 implicitplot3d(sin(v)^2-cos(v)^2 = 0, r = 0 .. 2,u = 0 .. 2*Pi, v = 0 .. Pi, grid = [10, 20, 10],coords = spherical); 1.18 implicitplot3d(z = x^2+y^2, x = -3 .. 3, y = -3 .. 3,z = 0 .. 9); 1.19 implicitplot3d(z = 5*cos(x^2+y^2)/(1+x^2+y^2),x = -3 .. 3, y = -3 .. 3, z = -1.5 .. 5,grid = [35, 35, 35]); 1.20 plot3d(sqrt(z), v = 0 .. 2*Pi, z = 0 .. 3,coords =cylindrical); 1.21 plot3d(exp(z)+exp(-z), v = 0 .. 2*Pi, z = -2 .. 2,coords =cylindrical); 1.22 plot3d(x^2+y^2, x = -5 .. 5, y = -5 .. 5); 1.23 plot3d(x^2+y^2, x = -y .. y, y = 0 .. 5); plot3d(x^2+y^2, x = -sqrt(25-y^2) .. sqrt(25-y^2),y = -5 .. 5); 1.24 g :=(x,y)-> x*y ; plot3d(g(x, y), x = -5 .. 5,y = -5 .. 5); 1.25 h := (x, y) -> x-(1/4)*y^2+10: plot3d(h(x, y),x = -5 .. 5, y = -5 .. 5); 1.26 F := (x, y)-> sqrt(100-x^2-y^2): plot3d(F(x, y), x = -10 .. 10, y = -10 .. 10); 1.27 plot3d([h(x, y), F(x, y)], x = -5 .. 5, y = -5 .. 5); 1.28 plot3d(1/(x^2+y^2), x = -2 .. 2, y = -2 .. 2,view = 0 .. 4); 1.29 plot3d(1/x, x = -1 .. 1, y = -1 .. 1, grid = [16, 16]); 1.30 f:=(x,y)->(x^3+2*y^3)/(1+x^2+3*y^2): implicitplot(f(x,y)=0,x=-10..10,y=-10..10,grid=[50,50]); 1.31 N0:=implicitplot(f(x,y)=0,x=-10..10,y=-10..10,grid=[50,50]): 1.32 display(N0,N2,Nm2,N4,Nm4,N6,Nm6); 1.33 contourplot(x^2+y^2, x = -sqrt(25-y^2) .. sqrt(25-y^2),y = -5 .. 5, grid = [30, 30],contours = 10); 1.34 f:=(x,y)->(x^3+2*y^3)/(1+x^2+3*y^2): contourplot(f(x, y), x = -10 .. 10, y = -10 .. 10,grid = [50, 50],contours = 7); 1.35 plot3d(x^2+y^2, x = -sqrt(25-y^2) .. sqrt(25-y^2),y = -5 .. 5, style=contour,contours = 10, grid =[50,50]); 1.36 with(plots):with(plottools): f := (x, y)->4*x^2-5*y^2+200: gf := plot3d(f(x, y), x = -5 .. 5, y = -5 .. 5,contours = 15, style =contour): cf :=contourplot(f(x, y), x = -5 .. 5, y = -5 .. 5,contours = 15): tf := transform((x, y)->[x, y, 0]): display(cf); display(gf, tf(cf)); 1.37 plot([t-sin(t), 1-cos(t), t = 0 .. 6*Pi]); with(plots): spacecurve([4*cos(6*Pi*t), 4*sin(6*Pi*t), 1.5*t],t = 0 .. 1, numpoints=1000); 1.38 spacecurve([(4+sin(20*t))*cos(t), (4+sin(20*t))*sin(t),2*cos(20*t)], t = 0 .. 7, numpoints = 1000); 1.39 animatecurve([65*cos((2*Pi*1/30)*t-(1/2)*Pi),65*(1+sin((2*Pi*1/30)*t-(1/2)*Pi)), t = 0 .. 30]); 1.40 fieldplot([x/(x^2+y^2+4)^(1/2), -y/(x^2+y^2+4)^(1/2)],x = -2 .. 2, y = -2 .. 2,grid=[8,8]); 1.41 fieldplot([-y, x], x = -2 .. 2, y = -2 .. 2,grid = [10,10]); 1.42 fieldplot3d([ x,2* (y+z),z/2+1], x = -1 .. 1,y = -1 .. 1, z = -1 .. 1,arrows = SLIM,grid = [5, 5, 5]); 1.43 plot3d([r*cos(v), r*sin(v), 2*r], r = 0..2, v = 0..2*Pi); 1.44 plot3d([5*cos(v)*sin(u),5*sin(v)*sin(u),5*cos(u)],u=0..Pi,v=0..2*Pi); 2.1 implicitplot3d(z-sin(2*v), r = 0 .. 1, v = 0 .. 2*Pi,z = -1.5 .. 1.5, grid = [30, 30, 20],coords =cylindrical); 2.2 g := (x, y)->2*x*y/(x^2+y^2); contourplot(g(x, y), x = -1 .. 1, y = -1 .. 1,grid = [100, 100]); 3.1 f:=(x,y) -> (x+1)^2+(x+1)(y+2)+(y+2)^2: plot3d(f(x,y), x=-0.1..0.1, y=-0.1..0.1,orientation =[-148, 60]); 3.2 fx := diff(exp(2*x*y)*sin(x* y^2),x); 3.3 fy := diff(exp(2*x*y)*sin(x*y^2),y); 3.4 subs(x=1,y=3,fx); 3.5 g := unapply(fx, x, y); g(1, 3); 3.6 f:=(x,y) -> exp(2*x*y)*sin(x*y^2); 3.7 fx:=D[1](f); dfx(1,3):=fx(1,3); 3.8 f := (x,y) -> (x+1)^2+(x+1)*(y+2)+(y+2)^2: mtaylor(f(x, y), [x = 0, y = 0], 2); 3.9 with(VetorCalculus): with(plots): f := (x,y) -> (x+1)^2+(x+1)*(y+2)+(y+2)^2: v := Gradient(f(x, y), [x, y]); 3.10 subs(x = 0, y = 0, v); 3.11 gradplot(f(x, y), x = -2 .. 2, y =-2 .. 2); 3.12 f := (x, y)-> x^2*y^3: h := (u,v)->f(u^2+v^2,u*v): hu := diff(h(u,v),u):uderivatan:=subs(u=2,v=-2,hu); hv := diff(h(u,v),v):vderivatan:=subs(u=2,v=-2,hv); 3.13 h:= (u,v)->f(x(u,v),y(u,v)): D[1](h)(a,b); 3.14 f := (x, y) -> x^2+y^3: ex := 12/sqrt(12^2+5^2):ey := 5/sqrt(12^2+5^2): gt := diff(f(1+t*ex, 1+t*ey), t); subs(t = 0, gt); 3.15 with(plots): f := (x, y) -> 3*x-5*y+10: A := gradplot(f(x, y), x = -2 .. 2, y = -2 .. 2): B :=contourplot(f(x, y), x = -2 .. 2, y = -2 .. 2): display(A,B); 3.16 f := (x,y,z)->(x^2+y^2)*z/(2-z^2): fx := D[1](f): fy := D[2](f): fz := D[3](f): fx(-1,2, 1); fy(-1, 2, 1); fz(-1, 2, 1); 4.1 f:=(x,y)->x*(1-y): g:=(x,y)->x^2+y^2: a11:=diff(f(x,y),x): a21:=diff(f(x,y),y): a12:=diff(g(x,y),x): a22:=diff(g(x,y),y): eq1:=a11* a22-a21* a12=0: eq2:=x^2+y^2=1: solve(eq1,eq2,x,y); 4.2 g:=(x,y)->(x+2*y)*exp(-(x^2+y^2)): eq1:=diff(g(x,y),x)=0: eq2:=diff(g(x,y),y)=0: allvalues(solve({eq1,eq2},{x,y})); 4.3 f:=(x,y)-> -4*x*y-2*y^2-x^4: solve({diff(f(x,y),x)=0,diff(f(x,y),y)=0},{x,y}); 5.1 dsolve(diff(f(x), x)+4*x*f(x) = x); 5.2 dsolve({diff(f(x), x)+4*x*f(x) = x,f(0)=1}); 5.3 pdsolve(diff(f(x,y),x)+2*x*y*f(x,y)=4*x*y^2); 5.4 sol:=solve(y^2=2*y+e^(-4*y)*h(y), h(y)): h:=unapply(sol,y); 5.5 pdsolve(diff(f(x, y), x)+diff(f(x, y), y) = 0); 5.6 with(PDEtools): PDE :=diff(f(x,y),x)+diff(f(x,y), y)=0; 5.7 tr := {v=x-y, u=x+y}; tr1:= solve(tr,{x, y}); 5.8 PDE1 := dchange(tr1, PDE); 5.9 pdsolve(PDE1); 6.1 f:=x->x^2: riemannsumma:=n-> sum(f(k/n)*1/n,k=1..n): simplify(riemannsumma(n)); limit(riemannsumma(n),n=infinity); 6.2 int(x^2,x=0..1); 6.3 S:=sum(sum((i+j),j=1..8),i=1..5); 6.4 S:=sum(sum((i+j),j=1..m),i=1..n); 6.5 S:=sum(sum(sum(i*(j+k),k=1..n),j=1..n),i=1..n); 6.6 summa:=n->sum(1/k^2,k=1..n): limit(summa(n),n=infinity); 6.7 f:=(x,y)->x*y^2: summa:=n->sum(sum(f(i/n,j/n)*1/n*1/n,i=1..2*n),j=1..n): simplify(summa(n)); limit(summa(n),n=infinity); 6.8 with(plots): f:=(x,y)->4-(x^2+y^2): fplus:=(x,y)->max(4-(x^2+y^2),0): fminus:=(x,y)->min(4-(x^2+y^2),0): plot3d(f(x,y),x=-3..3,y=-2..2); plot3d(abs(f(x,y)),x=-3..3,y=-2..2); plot3d(fplus(x,y),x=-3..3,y=-2..2); plot3d(fminus(x,y),x=-3..3,y=-2..2); 6.9 int(int(exp(x^2),y=0..x),x=0..1); 6.10 int(int(r*cos(phi)*(r*sin(phi))^2*r,r=1..3),phi=-Pi/4..Pi/4); 6.11 f:=(x,y)-> x* y^2: int(int(f(r*cos(phi),r*sin(phi))*r,phi=-Pi/4..Pi/4),r=1..3); 6.12 int(r^4,r=1..3)*int(cos(phi)*(sin(phi))^2,phi=-Pi/4..Pi/4); 6.13 int(2*r*ln(r),r=0..1); 6.14 int(1/sqrt(x), x = 0 .. 1); int(1/x^2, x = 0 .. 1); int(1/x^2, x = 1 .. infinity); int(sin(x),x = 1 .. infinity); 6.15 int(int(1/(x^2+y^2)^2, x = 1 .. infinity),y = 1 .. infinity); 6.16 int(int(1/(x^2+y^2)^2, x = 0 .. 1), y = 0 .. 1); 6.17 int(int(int(exp(x-y+z),z=0..(1-x-y)),y=0..(1-x)),x=0..1); 6.18 int(int(int(ln(x+y+z), x = 0 .. 1/3), y = 0 .. 1/3),z = 0 .. 1/3); evalf(%); 6.19 int(int(int(x*y*z/(x^2+y^2+z^2), x = 0 .. 1),y = 0 .. 1), z = 0 .. 1); evalf(%); 6.20 V:= int(r^2,r=0..2)*int(sin(v),v=0..Pi/4)*int(1,w=0..2*Pi); Tz:=int(r^3,r=0..2)*int(cos(v)*sin(v),v=0..Pi/4)*int(1,w=0..2*Pi); zkoord:= Tz/V; simplify(%); zkoord:=evalf(%); 7.1 pdsolve({diff(U(x,y),x)=x/(x^2+y^2),diff(U(x,y),y)=y/(x^2+y^2)},{U(x,y)}); 8.1 with(plots):with(plottools): V := fieldplot([-y, x], x = -2 .. 2, y = -2 .. 2,grid = [8, 8]):display(V); 8.2 V := fieldplot([-y+1, x-1], x = 0.5 .. 1.5,y = 0.5 .. 1.5,grid = [8, 8]): V1 := fieldplot([-y+1, x-1], x = .5 .. 1.5,y = .5 .. 1.5, grid = [8, 8]): PIL := arrow([1+.3/sqrt(2), 1+.3/sqrt(2)],[1+.9*.3/sqrt(2),1+1.1*.3/sqrt(2)], 0, 0.03, 1.5); display(V); display([V1, C, PIL]); 8.3 with(plots): with(plottools): P := (x, y)-> ln((x-1)^2+y^2)-ln((x+1)^2+y^2) : A := gradplot(P(x, y), x = -2.5 .. 2.5, y = -2.5 .. 2.5,grid = [12, 12], scaling =constrained, arrows = slim,fieldstrength = fixed): B :=contourplot(P(x, y), x = -2.5 .. 2.5, y = -2.5 .. 2.5,grid = [100, 100],contours = 20, scaling =constrained): display(A, B); 9.1 with(PDEtools): PDE:=diff(diff(f(x,t),t),t) -c^2*diff(diff(f(x,t),x),x)=0; 9.2 tr:={u = x+c*t, v = x-c*t}; tr1:= solve(tr,{x,t}); 9.3 PDE1 := simplify(dchange(tr1, PDE,[u,v],params=c)); 9.4 pdsolve(PDE1); 9.5 f(x,t):=subs(u=x+c*t,v=x-c*t,%);