On the Inverse Spectral Problem for Graphs with Cycles

Pavel Kurasov

Lund University, SWEDEN

July 17, 2008
1 Introduction
 - Quantum graphs
 - Spectral properties
 - Inverse problems
 - The main idea

2 Marchenko-Ostrovsky theory

3 Inverse problems for simple graphs
 - Ring
 - Lassoo
 - Zweihänder

4 General result
Quantum graph as a triplet

1. **Metric graph** Γ - union of intervals $\Delta_j = [x_{2j-1}, x_{2j}]$ connected together at the vertices V_m considered as equivalence classes of end-points \Rightarrow the Hilbert space $L_2(\Gamma)$;

2. **Differential expression** (formally symmetric) on the edges

$$L_{q,a} = \left(-\frac{1}{i} \frac{d}{dx} + a(x) \right)^2 + q(x)$$

\Rightarrow the linear operator $L_{q,a}$;

3. **Boundary conditions** at the vertices
 - to determine $L_{q,a}$ as a self-adjoint operator,
 - connect together different edges.

In this talk we are going to speak only about the **standard boundary conditions** only, that is:
 - the function is continuous,
 - the sum of ”normal” derivatives is zero.
Quantum graph as a triplet

1. **Metric graph** Γ - union of intervals $\Delta_j = [x_{2j-1}, x_{2j}]$ connected together at the vertices V_m considered as equivalence classes of end-points \Rightarrow the Hilbert space $L_2(\Gamma)$;

2. **Differential expression** (formally symmetric) on the edges

 \[L_{q,a} = \left(-\frac{1}{i} \frac{d}{dx} + a(x) \right)^2 + q(x) \]

 \Rightarrow the linear operator $L_{q,a}$;

3. **Boundary conditions** at the vertices
 - to determine $L_{q,a}$ as a self-adjoint operator,
 - connect together different edges.

In this talk we are going to speak only about the **standard boundary conditions** only, that is:
 - the function is continuous,
 - the sum of "normal" derivatives is zero.
"Elimination" of the magnetic field

Consider the unitary transformation:

\[(U\psi)(x) = \exp \left(-i \int_{x_{2n-1}}^{x} a(y) dy \right) \psi(x), \quad x \in (x_{2n-1}, x_{2n}), \quad n = 1, 2, ..., N,\]

which allows one to eliminate the magnetic field

\[U \left(\left(-\frac{1}{i} \frac{d}{dx} + a(x) \right)^2 + q(x) \right) U^{-1} \psi(x) = -\frac{d^2}{dx^2} \psi(x) + q(x) \psi(x).\]

NB! The magnetic field can be eliminated from the differential expression, but then it appears in the boundary conditions (if the graph is not a tree).

Proposition 1. The spectrum of the magnetic Schrödinger operator \(L_{q,a}\) is pure discrete and does not depend on the particular form of the magnetic field but just on the fluxes of the magnetic field through the cycles

\[\Phi_j = \int_{c_j} a(y) dy.\]
Inverse problems: concise historical overview

Solution of the inverse problem for quantum graphs means reconstruction of

- the metric graph;
- the differential expressions on the edges;
- the coupling conditions at the vertices.

Obtained results NB! for zero magnetic potential!

- Reconstruction of the graph:
 - with rationally independent lengths:
 B. Gutkin, T. Kottos and U. Smilansky, '99, '01;
 P. K., F. Stenberg and M. Nowaczyk '02, '05, '07, '08;
 - in the case of tree:
 V. Yurko '06,
 S. Avdonin and P. K. '08;
 - calculation of the Euler characteristic:
 P. K. '08, '08;
Introduction
Inverse problems

Solution of the inverse problem for quantum graphs means reconstruction of:
- the metric graph;
- the differential expressions on the edges;
- the coupling conditions at the vertices.

Obtained results NB! for zero magnetic potential!

Reconstruction of the graph:
- with rationally independent lengths:
 B. Gutkin, T. Kottos and U. Smilansky, '99, '01;
 P. K., F. Stenberg and M. Nowaczyk '02, '05, '07, '08;
- in the case of tree:
 V. Yurko '06,
 S. Avdonin and P. K. '08;
- calculation of the Euler characteristic:
 P. K. '08, '08;
Reconstruction of the potential on graphs:
- star graph:
 N.I. Gerasimenko and B.S. Pavlov, 1988;
- tree:
 M. Belishev and A. Vakulenko, ’04, ’06, ’07;
 M. Brown and R. Weikard, ’05;
 V. Yurko ’05, ’06, ’08;
 S. Avdonin and P. K. ’08;
- impossibility for loops:
 J. Boman and P. K., 05
 V. Pivovarchik, manuscript;

Reconstruction of the boundary conditions:
- for star graphs:
 V. Kostrykin and R. Schrader ’00, ’06;
 M. Harmer ’03.

Other references:
General overview: P. Kuchment ’04.
The main idea

Conclusions concerning recovering the potential

- Knowledge of the spectrum alone is not enough to reconstruct the potential.
- Titchmarsh-Weyl function (equivalently the Dirichlet-to-Neumann map) is an efficient tool to solve the inverse problem for graphs.
- Potential on the branches can be reconstructed from the TW function using Boundary Control method.
- Potential on the kernel of the graph in general cannot be determined by the TW function.

Our programme

Study the possibility to reconstruct the graph Γ and potential q on it from the TW function known for different values of the magnetic field.
The main idea

Conclusions concerning recovering the potential

- Knowledge of the spectrum alone is not enough to reconstruct the potential.
- Titchmarsh-Weyl function (equivalently the Dirichlet-to-Neumann map) is an efficient tool to solve the inverse problem for graphs.
- Potential on the branches can be reconstructed from the TW function using Boundary Control method.
- Potential on the kernel of the graph in general cannot be determined by the TW function.

Our programme

Study the possibility to reconstruct the graph Γ and potential q on it from the TW function known for different values of the magnetic field.
The main idea

Conclusions concerning recovering the potential

- Knowledge of the spectrum alone is not enough to reconstruct the potential.
- Titchmarsh-Weyl function (equivalently the Dirichlet-to-Neumann map) is an efficient tool to solve the inverse problem for graphs.
- Potential on the branches can be reconstructed from the TW function using Boundary Control method.
- Potential on the kernel of the graph in general cannot be determined by the TW function.

Our programme

Study the possibility to reconstruct the graph Γ and potential q on it from the TW function known for different values of the magnetic field.
The main idea

Conclusions concerning recovering the potential

- Knowledge of the spectrum alone is not enough to reconstruct the potential.
- Titchmarsh-Weyl function (equivalently the Dirichlet-to-Neumann map) is an efficient tool to solve the inverse problem for graphs.
- Potential on the branches can be reconstructed from the TW function using Boundary Control method.
- Potential on the kernel of the graph in general cannot be determined by the TW function.

Our programme

Study the possibility to reconstruct the graph Γ and potential q on it from the TW function known for different values of the magnetic field.
The main idea

Conclusions concerning recovering the potential

- Knowledge of the spectrum alone is not enough to reconstruct the potential.
- Titchmarsh-Weyl function (equivalently the Dirichlet-to-Neumann map) is an efficient tool to solve the inverse problem for graphs.
- Potential on the branches can be reconstructed from the TW function using Boundary Control method.
- Potential on the kernel of the graph in general cannot be determined by the TW function.

Our programme

Study the possibility to reconstruct the graph Γ and potential q on it from the TW function known for different values of the magnetic field.
Marchenko-Ostrovsky theory

Provides necessary and sufficient conditions for a sequence of intervals to be the spectrum of one-dimensional periodic Schrödinger operator L^per_q.

Transfer matrix $T(a, b; \lambda)$

$$-\frac{d^2}{dx^2} \psi(x) + q(x) \psi(x) = \lambda \psi(x) \Rightarrow T(a, b; \lambda) : \begin{pmatrix} \psi(a) \\ \psi'(a) \end{pmatrix} \mapsto \begin{pmatrix} \psi(b) \\ \psi'(b) \end{pmatrix}$$

Introduce the functions:

$$u_\pm(\lambda) = \left(t_{11}(\lambda) \pm t_{22}(\lambda)\right)/2$$

The end points of the spectral intervals $\mu_j, \tilde{\mu}_j$ are solutions to the equation

$$u_\pm(\lambda) = \pm 1.$$
Proposition 2. For the sequences

\[0 = \tilde{\mu}_0 < \mu_1 \leq \tilde{\mu}_1 < \mu_2 \leq \tilde{\mu}_2 < \ldots \]

(1)

to be the spectra of periodic and antiperiodic boundary value problems generated on the interval \([0, \pi]\) by the operator \(-\frac{d^2}{dx^2} + q(x)\) with real potential \(q(x) \in W_2^n[0, \pi]\), it is necessary and sufficient that there exist a sequence of real numbers \(h_k (k = 0, \pm 1, \pm 2, \ldots)\) satisfying the conditions

\[\sum_{k=1}^{\infty} (k^{n+1} h_k)^2 < \infty, \quad h_0 = 0, \quad h_k = h_{-k} \geq 0 (k = 1, 2, \ldots), \]

(2)

such that

\[\sqrt{\mu_k} = z(\pi k - 0), \quad \sqrt{\tilde{\mu}_k} = z(\pi k + 0) \quad (k = 1, 2, \ldots), \]

where the function \(z(\theta)\) effects a conformal mapping of the region

\[\{\theta : \text{Im} \theta > 0\} \setminus \bigcup_{k=-\infty}^{+\infty} \{\theta : \text{Re} \theta = k\pi, 0 \leq \text{Im} \theta \leq h_k\} \]

(3)

into the upper half-plane, normalized by the conditions

\[\theta(0) = 0, \quad \lim_{y \to \infty} (iy)^{-1} \theta(iy) = \pi. \]
In fact the following statement has been proven in

\textbf{Proposition 3.} Assume that all conditions of Proposition 2 are satisfied. The following set of spectral data determine the potential uniquely:

- the spectrum of the periodic operator

 \[[0 = \tilde{\mu}_0, \mu_1] \cup [\tilde{\mu}_1, \mu_2] \cup [\tilde{\mu}_2, \mu_3] \cup \ldots, \]

- the D-D spectrum \(\lambda_k \) satisfying \(\mu_j \leq \lambda_j \leq \tilde{\mu}_j \),

- the sequence of signs \(\nu_k = \pm 1 \).
Motivation for the Proposition

- In order to determine the potential it is enough to know the spectra of the DD and DN problems (Borg-Levitan-Marchenko). Equivalently it is enough to know the functions
 - $t_{22}(\lambda)$ - its zeroes form the spectrum of D-N problem;
 - $t_{12}(\lambda)$ - its zeroes form the spectrum of D-D problem.

- The spectrum of the periodic Schrödinger operator (periodic and antiperiodic problems) allows one to determine the quasimomentum $\theta(\lambda)$ so that we have
 \[
 u_+(\lambda) = \cos \theta(\lambda).
 \]

- The numbers λ_k give the spectrum the D-D problem, or the function $t_{12}(\lambda)$.

- For $\lambda = \lambda_k$ we have:
 \[
 t_{11} + t_{22} = 2 \cos \theta(\lambda_k), \quad t_{11} t_{22} = 1 \Rightarrow u_-(\lambda_k) = \nu_k \sqrt{u_+^2 - 1}, \quad \nu_k = \pm 1.
 \]

So in order to determine the D-N spectrum (the function t_{22}) one needs to know the sequence of signs ν_k.

Motivation for the Proposition

- In order to determine the potential it is enough to know the spectra of the DD and DN problems (Borg-Levitan-Marchenko). Equivalently it is enough to know the functions
 - $t_{22}(\lambda)$ - its zeroes form the spectrum of D-N problem;
 - $t_{12}(\lambda)$ - its zeroes form the spectrum of D-D problem.

- The spectrum of the periodic Schrödinger operator (periodic and antiperiodic problems) allows one to determine the quasimomentum $\theta(\lambda)$ so that we have
 $$u_+(\lambda) = \cos \theta(\lambda).$$

- The numbers λ_k give the spectrum the D-D problem, or the function $t_{12}(\lambda)$.

- For $\lambda = \lambda_k$ we have:
 $$t_{11} + t_{22} = 2 \cos \theta(\lambda_k),\ t_{11}t_{22} = 1 \Rightarrow u_-(\lambda_k) = \nu_k \sqrt{u_+^2 - 1}, \nu_k = \pm 1.
 $$

So in order to determine the D-N spectrum (the function t_{22}) one needs to know the sequence of signs ν_k.
Motivation for the Proposition

In order to determine the potential it is enough to know the spectra of the DD and DN problems (Borg-Levitan-Marchenko). Equivalently it is enough to know the functions

- $t_{22}(\lambda)$ - its zeroes form the spectrum of D-N problem;
- $t_{12}(\lambda)$ - its zeroes form the spectrum of D-D problem.

The spectrum of the periodic Schrödinger operator (periodic and antiperiodic problems) allows one to determine the quasimomentum $\theta(\lambda)$ so that we have

$$u_+(\lambda) = \cos \theta(\lambda).$$

The numbers λ_k give the spectrum the D-D problem, or the function $t_{12}(\lambda)$.

For $\lambda = \lambda_k$ we have:

$$t_{11} + t_{22} = 2 \cos \theta(\lambda_k), \quad t_{11} t_{22} = 1 \Rightarrow u_-(\lambda_k) = \nu_k \sqrt{u_+^2 - 1}, \quad \nu_k = \pm 1.$$

So in order to determine the D-N spectrum (the function t_{22}) one needs to know the sequence of signs ν_k.
Motivation for the Proposition

- In order to determine the potential it is enough to know the spectra of the DD and DN problems (Borg-Levitan-Marchenko). Equivalently it is enough to know the functions
 - $t_{22}(\lambda)$ - its zeroes form the spectrum of D-N problem;
 - $t_{12}(\lambda)$ - its zeroes form the spectrum of D-D problem.

- The spectrum of the periodic Schrödinger operator (periodic and antiperiodic problems) allows one to determine the quasimomentum $\theta(\lambda)$ so that we have
 \[u_{\pm}(\lambda) = \cos \theta(\lambda). \]

- The numbers λ_k give the spectrum the D-D problem, or the function $t_{12}(\lambda)$.

- For $\lambda = \lambda_k$ we have:
 \[t_{11} + t_{22} = 2 \cos \theta(\lambda_k), \quad t_{11} t_{22} = 1 \Rightarrow u_{-}(\lambda_k) = \nu_k \sqrt{u_{+}^2 - 1}, \quad \nu_k = \pm 1. \]

So in order to determine the D-N spectrum (the function t_{22}) one needs to know the sequence of signs ν_k.
The potential is uniquely determined by

- the function $u_+(\lambda)$;
- the function $t_{12}(\lambda)$;
- the function $u_-(\lambda)$.
Inverse problems for simple graphs

Ring graph Γ_1

Φ_1 - the total flux through the ring $\Phi_1 = \int_{x_1}^{x_2} a(y)dy$.

L_{q,Φ_1} - magnetic Schrödinger operator.

E is an eigenvalue of L_{q,Φ_1} if and only if it belongs to the interval of the absolutely continuous spectrum of the periodic operator $L_{q,\text{per}}$ corresponding to the quasimomentum $\theta = \Phi_1$.

The knowledge of $E_n(\Phi_1)$ allows one to recover just

- the function $u_+(\lambda) = \text{Tr} \ T(\lambda)/2$.

The potential can be reconstructed only in the very exceptional case of zero or constant potential.
Lassoo graph Γ_2

The knowledge of the TW function $M_{\Phi_j}(\lambda, \Gamma_2)$ by Boundary-Control method allows one to determine the TW function $M_{\Phi_1}(\lambda, \Gamma_1)$ (where Γ_1 is the ring graph with one contact point)

$$M_{\Phi_1}(\lambda, \Gamma_1) = \frac{2 \cos \Phi_1 - \text{Tr} \ T(\lambda)}{t_{12}(\lambda)}.$$

The knowledge of the TW matrix for the magnetic flux $\Phi_1 = 0, \pi$ (and for all other values of Φ_1) allows one to recover just

- the function $u_+(\lambda) = \text{Tr} \ T(\lambda)/2$;
- the function $t_{12}(\lambda)$.

To reconstruct the potential on the ring we need to know in addition the sequence of signs ν_k or, equivalently, the function $u_-(\lambda)$. Reconstruction of the potential on the ring can be carried out, but it is not unique. The potential on the boundary edge is uniquely determined by $M_{\Phi}(\lambda, \Gamma_2)$.

Zweihänder graph Γ_3

The knowledge of the TW function $M_{\Phi_j}(\lambda, \Gamma_2)$ by the Boundary-Control method allows one to determine the 2×2 TW function $M_{\Phi_1}(\lambda, \Gamma_4)$, where Γ_4 is the ring graph with two contact points

$$
M(\lambda, \Gamma_4) = \frac{1}{t_{12}^1 t_{12}^2} \begin{pmatrix}
-(T^1 T^2)_{12} & t_{12}^1 e^{i\Phi_2} + t_{12}^2 e^{-i\Phi_1} \\
t_{12}^2 e^{i\Phi_1} + t_{12}^1 e^{-i\Phi_2} & -(T^2 T^1)_{12}
\end{pmatrix},
$$

where $T^{1,2}$ are the transfer matrices for the two intervals forming the circle.

NB! The TW matrix can be reconstructed up to the similarity transformation with diagonal unitary matrix

$$
M(\lambda) = \begin{pmatrix}
e^{i\Phi_3} & 0 \\
0 & e^{i\Phi_4}
\end{pmatrix} M(\lambda, \Gamma_4) \begin{pmatrix}
e^{-i\Phi_3} & 0 \\
0 & e^{-i\Phi_4}
\end{pmatrix}
$$

$$
= \begin{pmatrix}
-(T^1 T^2)_{12} t_{12}^1 t_{12}^2 & \frac{1}{t_{12}^1} + \frac{1}{t_{12}^2} e^{-i\Phi} e^{i(\Phi_2+\Phi_3-\Phi_4)} \\
(\frac{1}{t_{12}^1} + \frac{1}{t_{12}^2} e^{i\Phi}) e^{-i(\Phi_2+\Phi_3-\Phi_4)} & -(T^2 T^1)_{12} t_{12}^1 t_{12}^2
\end{pmatrix}.
$$
Zweihänder graph Γ_3

The knowledge of the TW function $M_{\Phi_j}(\lambda, \Gamma_2)$ by the Boundary-Control method allows one to determine the 2×2 TW function $M_{\Phi_1}(\lambda, \Gamma_4)$, where Γ_4 is the ring graph with two contact points

$$M(\lambda, \Gamma_4) = \frac{1}{t_{12}^1 t_{12}^2} \begin{pmatrix} - (T^1 T^2)_{12} & t_{12}^1 e^{\Phi_2} + t_{12}^2 e^{-i\Phi_1} \\ t_{12}^2 e^{i\Phi_1} + t_{12}^1 e^{-i\Phi_2} & - (T^2 T^1)_{12} \end{pmatrix},$$

where $T^{1,2}$ are the transfer matrices for the two intervals forming the circle. **NB!** The TW matrix can be reconstructed up to the similarity transformation with diagonal unitary matrix

$$M(\lambda) = \begin{pmatrix} e^{i\Phi_3} & 0 \\ 0 & e^{i\Phi_4} \end{pmatrix} M(\lambda, \Gamma_4) \begin{pmatrix} e^{-i\Phi_3} & 0 \\ 0 & e^{-i\Phi_4} \end{pmatrix}$$

$$= \begin{pmatrix} - (T^1 T^2)_{12} & \left(\frac{1}{t_{12}^1} + \frac{1}{t_{12}^2} e^{i\Phi} \right) e^{i(\Phi_2 + \Phi_3 - \Phi_4)} \\ \left(\frac{1}{t_{12}^1} + \frac{1}{t_{12}^2} e^{i\Phi} \right) e^{-i(\Phi_2 + \Phi_3 - \Phi_4)} & - (T^2 T^1)_{12} \end{pmatrix}.$$
No-resonance condition

No-resonance condition 1. *We say that the no-resonance condition is satisfied if and only if the D-D spectra of the SL operators on the intervals \([x_1, x_2]\) and \([x_3, x_4]\) do not intersect.*

Necessary and sufficient conditions:
- There exists an eigenfunction supported by the kernel \(\Rightarrow\) no-resonance condition is violated at this value of the energy.
- No-resonance condition is violated \(\Rightarrow\)
 - either there exists an eigenfunction supported by the kernel,
 - or the scattering matrix is diagonal (at this energy).
No-resonance condition 1. We say that the no-resonance condition is satisfied if and only if the D-D spectra of the SL operators on the intervals $[x_1, x_2]$ and $[x_3, x_4]$ do not intersect.

Necessary and sufficient conditions:

- There exists an eigenfunction supported by the kernel \Rightarrow no-resonance condition is violated at this value of the energy.
- No-resonance condition is violated \Rightarrow
 - either there exists an eigenfunction supported by the kernel,
 - or the scattering matrix is diagonal (at this energy).
Theorem 1. Let the no-resonance condition be satisfied. Then the potential on \(\Gamma_3 \) is uniquely determined by the TW-function \(M(\lambda, \Gamma_3) \) known for \(\Phi = 0, \pi \), where \(\Phi \) is the total flux of the magnetic field through the ring

\[\Phi = \int_{[x_1, x_2] \cup [x_3, x_4]} a(y)dy. \]

Idea of the proof

\[
\begin{align*}
\left| (M_0(\lambda))_{12} \right| & = \left| \frac{1}{t_{12}^1} + \frac{1}{t_{12}^2} \right|, \\
\frac{1}{4} \left(\left| (M_0(\lambda))_{12} \right|^2 - \left| (M_\pi(\lambda))_{12} \right|^2 \right) & = \frac{1}{t_{12}^1} \frac{1}{t_{12}^2}.
\end{align*}
\]

\(\Rightarrow \) the analytic functions \(t_{12}^1 \) and \(t_{12}^2 \) are determined.

The entry 11 gives us the function

\[
(T^1(\lambda) T^2(\lambda))_{12} = t_{11}^1(\lambda) t_{12}^2(\lambda) + t_{12}^1(\lambda) t_{22}^2(\lambda) = -t_{12}^1(\lambda) t_{12}^2(\lambda)(M_0(\lambda))_{11}.
\]

Consider the points \(\lambda_j \) - the zeroes of \(t_{12}^1 \)

\[
t_{11}^1(\lambda_j) = (T^1(\lambda_j) T^2(\lambda_j))_{12}/t_{12}^2(\lambda_j)
\]

\(\Rightarrow \) the entire function of exponential type \(t_{11}^1 \) is uniquely determined \(\Rightarrow \) the function \(t_{22}^1 \) is determined.
Theorem 1. Let the no-resonance condition be satisfied. Then the potential on \(\Gamma_3 \) is uniquely determined by the TW-function \(M(\lambda, \Gamma_3) \) known for \(\Phi = 0, \pi \), where \(\Phi \) is the total flux of the magnetic field through the ring
\[
\Phi = \int_{[x_1, x_2] \cup [x_3, x_4]} a(y) \, dy.
\]

Idea of the proof

\[
\begin{align*}
\left| (M_0(\lambda))_{12} \right| & = \left| \frac{1}{t_{12}} + \frac{1}{t_{12}^2} \right|, \\
\frac{1}{4} (\left| (M_0(\lambda))_{12} \right|^2 - \left| (M_\pi(\lambda))_{12} \right|^2) & = \frac{1}{t_{12}^3} \frac{1}{t_{12}^2}.
\end{align*}
\]

\(\Rightarrow \) the analytic functions \(t_{12}^1 \) and \(t_{12}^2 \) are determined.

The entry 11 gives us the function
\[
(T^1(\lambda) T^2(\lambda))_{12} = t_{11}^1(\lambda) t_{12}^2(\lambda) + t_{12}^1(\lambda) t_{22}^2(\lambda) = -t_{12}^1(\lambda) t_{12}^2(\lambda) (M_0(\lambda))_{11}.
\]

Consider the points \(\lambda_j \) - the zeroes of \(t_{12}^1 \)
\[
t_{11}^1(\lambda_j) = \frac{(T^1(\lambda_j^1) T^2(\lambda_j^1))_{12}}{t_{12}^2(\lambda_j^1)}
\]

\(\Rightarrow \) the entire function of exponential type \(t_{11}^1 \) is uniquely determined

\(\Rightarrow \) the function \(t_{22}^1 \) is determined.
Theorem 1. Let the no-resonance condition be satisfied. Then the potential on Γ_3 is uniquely determined by the TW-function $M(\lambda, \Gamma_3)$ known for $\Phi = 0, \pi$, where Φ is the total flux of the magnetic field through the ring $\Phi = \int_{[x_1, x_2] \cup [x_3, x_4]} a(y) \, dy$.

Idea of the proof

\[
\begin{aligned}
\left| (M_0(\lambda))_{12} \right| & = \left| \frac{1}{t_{12}} + \frac{1}{t_{12}^2} \right|, \\
\frac{1}{4} \left(\left| (M_0(\lambda))_{12} \right|^2 - \left| (M_{\pi}(\lambda))_{12} \right|^2 \right) & = \frac{1}{t_{12}} \frac{1}{t_{12}^2}.
\end{aligned}
\]

\Rightarrow the analytic functions t_{12}^1 and t_{12}^2 are determined.

The entry 11 gives us the function

\[
(T^1(\lambda) T^2(\lambda))_{12} = t_{11}^1(\lambda) t_{12}^2(\lambda) + t_{12}^1(\lambda) t_{22}^2(\lambda) = -t_{12}^1(\lambda) t_{12}^2(\lambda) (M_0(\lambda))_{11}.
\]

Consider the points λ_j^1 - the zeroes of t_{12}^1

\[
t_{11}^1(\lambda_j^1) = (T^1(\lambda_j^1) T^2(\lambda_j^1))_{12} / t_{12}^2(\lambda_j^1)
\]

\Rightarrow the entire function of exponential type t_{11}^1 is uniquely determined \Rightarrow the function t_{22}^1 is determined.
Theorem 1. Let the no-resonance condition be satisfied. Then the potential on \(\Gamma_3 \) is uniquely determined by the TW-function \(M(\lambda, \Gamma_3) \) known for \(\Phi = 0, \pi \), where \(\Phi \) is the total flux of the magnetic field through the ring
\[
\Phi = \int_{[x_1,x_2] \cup [x_3,x_4]} a(y) dy.
\]

Idea of the proof

\[
\begin{align*}
|\langle M_0(\lambda)\rangle_{12}| & = \left| \frac{1}{t_{12}} + \frac{1}{t_{12}^2} \right|, \\
\frac{1}{4} (|\langle M_0(\lambda)\rangle_{12}|^2 - |\langle M_\pi(\lambda)\rangle_{12}|^2) & = \frac{1}{t_{12}^4} \frac{1}{t_{12}^4}.
\end{align*}
\]

\(\Rightarrow \) the analytic functions \(t_{12}^1 \) and \(t_{12}^2 \) are determined. The entry 11 gives us the function
\[
(\mathcal{T}^1(\lambda) \mathcal{T}^2(\lambda))_{12} = t_{11}^1(\lambda) t_{12}^2(\lambda) + t_{12}^1(\lambda) t_{22}^2(\lambda) = -t_{12}^1(\lambda) t_{12}^2(\lambda) \langle M_0(\lambda)\rangle_{11}.
\]

Consider the points \(\lambda_j^1 \) - the zeroes of \(t_{12}^1 \)
\[
t_{11}^1(\lambda_j^1) = (\mathcal{T}^1(\lambda_j^1) \mathcal{T}^2(\lambda_j^1))_{12} / t_{12}^2(\lambda_j^1)
\]

\(\Rightarrow \) the entire function of exponential type \(t_{11}^1 \) is uniquely determined \(\Rightarrow \) the function \(t_{22}^1 \) is determined.
Theorem 2. Assume that:

- Γ is a metric graph which is:
 - formed by a finite number of compact intervals,
 - has no loops,
 - has Euler characteristic zero, i.e. has one cycle;
- $L_{q,a}$ is the magnetic Schrödinger operator in $L_2(\Gamma)$, with
 - $q \in L_2(\Gamma)$ real,
 - $a \in C(\Gamma)$ real,
 - standard boundary conditions at the vertices;
- Φ is the total flux through the cycle;
- $M_\Phi(\lambda)$ is the TW matrix function.

Then the TW matrix function $M_\Phi(\lambda)$ known for $\Phi = 0, \pi$ determines the graph Γ and the potential q, provided that the no-resonance condition is satisfied.
No-resonance condition
Let the kernel $\ker \Gamma$ be a cycle divided by contact points $\gamma_j, j = 1, 2, \ldots, \mathcal{M}$ into \mathcal{M} intervals $[x_{2j-1}, x_{2j}]$.
Denote by $L_{q,a}^{j,k}|_{\ker \Gamma}, j \neq k$ the self-adjoint operator determined by the differential expression $L_{q,a}$ on the domain of functions from $\bigoplus \sum_{j=1}^{\mathcal{M}} W^2_2([x_{2j-1}, x_{2j}])$ satisfying Dirichlet boundary conditions at the contact vertices γ_j and γ_k and the standard boundary conditions at all other contact points.

No-resonance condition 2. *We say that the no-resonance condition is satisfied if and only if the spectrum of at least one of the self-adjoint operator $L_{q,a}^{j,k}|_{\ker \Gamma}$ is simple, i.e. no multiple eigenvalue occurs.*

Reconstruction of the potential on the branches

Then Theorem 1 implies Theorem 2.
Diolch yn Fawr!