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Preface

The work and results on Diophantine Approximation and Badly Approximable
Numbers collected in this thesis are based upon the four papers,

P1. J. Nilsson. On Numbers Badly Approximable by Dyadic Rationals.

P2. J. Nilsson. On Numbers Badly Approximable Via the β-shift.

P3. J. Nilsson. The Fine Structure of Dyadically Badly Approximable
Numbers.

P4. J. Nilsson. The Fine Structure of q-adically Badly Approximable Num-
bers.

In the first two papers we consider, for the unit circle S, the set F 1(c, β) =
{x ∈ S : βnx ≥ c (mod 1) n ≥ 0}. In the first paper, P1, we restrict ourselves
to have β ≥ 2 an integer and we give elementary proofs that F 1(c, β) is a fractal
set whose Hausdorff dimension depends continuously on c and is constant on
intervals which form a set of Lebesgue measure 1. Hence it has a fractal graph.
We completely describe the intervals where the dimension remains unchanged.
The proofs uses methods from symbolic dynamics and the field of combinatorics
on words. In P2 we refine the results achieved in P1 to hold for an arbitrary
real β > 1, by using methods and results form the theory of the β-shift. The
results obtained implies that we can completely describe the graph of c 7→
dimH{x ∈ [0, 1] : x− m

βn < c
βn (mod 1) finitely often}.

The two last papers concerns the far more complex set F 2(c, q) = {x ∈ S :
‖qnx‖ ≥ c , n ≥ 0}, where ‖ · ‖ denotes the smallest distance to an integer and
for the integer q ≥ 2. In P3 we restrict ourselves to the binary case i.e. having
q = 2 and in P4 we generalise the achieved results to hold in the case for an
arbitrary integer q ≥ 2. By similar elementary methods as used in P1 we prove
that F 2(c, q) is a fractal set whose Hausdorff dimension depends continuously
on c, is constant on intervals which form a set of Lebesgue measure 1 and is self-
similar. Hence it has a fractal graph. We completely characterise the intervals
where the dimension remains unchanged. Moreover, we show that the threshold
for having positive dimension of F 2(c, q) is closely related to the classical Thue-
Morse sequence. A consequence of our results is that we can completely describe
the graph of c 7→ dimH{x ∈ [0, 1] : ‖x− m

qn ‖ < c
qn finitely often}.
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On Numbers Badly Approximable by q-adic Rationals

1 Diophantine Approximation and Badly Ap-
proximable Numbers

Let (X, d) be a metric space. Given a sequence {xn} ⊂ X, of maybe
random numbers, and a sequence {ln} of positive real numbers we define
the following two sets I = {y ∈ X : d(xn, y) < ln infinitely often}, and
F = X \ I. By the notion diophantine approximation we shall mean
the study of the sets I and F . Let us make the following remark: if the
sequence {xn} is dense in X then I is a non-empty and hence a residual
set in the sense of Baire.

For the sequences {xn,m}n∈N, 0≤m<n and {ln} such that

xn,m =
m

n
and ln =

1
nα
, (1.1)

with gcd(m,n) = 1, we are in the case of the classical diophantine
approximation with rational numbers. It is a well know fact that if
α > 2 then F is non-empty while it is empty when α < 2.

Inspired by the above example, we continue in this direction and
refine the definition of the set F to be the following set

F (α) =
{
y ∈ X : d(xn,m, y) <

1
nα

finitely often
}
. (1.2)

An interesting question is to look at the critical exponent, α0, such that
F (α) is empty if α < α0 and is non-empty when α > α0. For this special
value α0 we say that the set F (α0) is the set of Badly Approximable
Numbers, BAN .

A second step in refinement of (1.2) is to introduce the dependence
on an extra parameter, c,

Fc(α) =
{
y ∈ X : d(xn,m, y) <

c

nα
finitely often

}
.

In the one-dimensional case this refinement leads to the area of continued
fraction, which was first systematically studied by the Dutch astronomer
Huygens in the 17-th century, motivated by technical problems while
constructing a model of our solar system. Briefly, the continued fraction
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for a positive real x is,

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where the an’s are called partial denominators. For brevity the continued
fractions are often denoted by [a0, a1, a2, . . .]. The following theorem
gives a neat connection between the badly approximable numbers and
the continued fractions, for a proof see [9].

Theorem 1.1 An irrational x is a BAN if and only if its partial de-
nominators are bounded.

Yet another version, or refinement, of the F set can be introduced
via a condition on the partial denominators. We set

F (2, N) = {x : x = [a0, a1, a2, . . .] with aj < N} .

The theory of iterated function system, IFS -theory, gives an implicit
formula for the dimH F (2, N). The set Fc(2) is finer as F (2, N) counts
only the maximal ai while the c takes into account all ai. In 1891 Hurwitz
found that if c < 1√

5
then Fc(2) is empty and moreover the constant 1√

5

is the best possible, but otherwise little is known about the set Fc(2).

1.1 q-adically Badly Approximable Numbers

The subject of this thesis is badly approximable numbers under approx-
imation of q-adic numbers. We say that a real number x is q-adic, for a
fixed q > 1, if it is of the form x = m

qn for some positive integers n and
m. Similar to (1.1) we let

xn,m =
m

qn
and ln =

c

qn
,

for 0 < c < 1.

10
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We will consider two types of approximations, a one-sided model and
a two-sided one. The one-sided q-adically BAN is the set

F 1(c, q) =
{
x ∈ S : x− m

qn
<

c

qn
(mod 1) finitely often

}
and the two-sided q-adically BAN is the set

F 2(c, q) =
{
x ∈ S :

∥∥∥∥x− m

qn

∥∥∥∥ < c

qn
finitely often

}
,

where ‖ · ‖ denotes the shortest distance to an integer.

In Part I we study the one-sided BAN . we will present two different
approaches. The first, presented in Section 5, is when letting q ≥ 2 be
an integer and the second is when having q = β for a real β > 1, given
in Section 7. The main results achieved, when stated for the general
β-case, is

Main Result 1.2 For β > 1 the function φβ : c 7→ dimH F 1(c, β) is
continuous, has derivative zero Lebesgue a.e. and the complementary
zero-set, to where the derivative of φβ is zero, has full Hausdorff dimen-
sion. Moreover we give the complete description of the intervals where
the derivative of φβ is zero.

The main idea used to prove our main result is to transform the set
F 1(c, q) into a set of sequences. This is done by identify a real num-
ber x ∈ [0, 1] by its expansion x in base q. Hence the question now
becomes a problem in symbolic dynamics. In Section 4 we introduce
the concept of minimal sequences, and we present an algorithm how to
obtain them. The minimal sequences are limit points of sequences of
minimal sequences, which implies the continuity. Later on, the minimal
sequences will play a crucial role when describing the intervals where
the derivative of φβ is zero in Section 5. For a minimal sequence and
an integer β = q ≥ 2 we can associate a transition matrix Ac to the
set F 1(c, q). This matrix Ac will be primitive and we can apply the
classical Perron-Frobenius Theorem 2.2 to show that the intervals ob-
tained indeed are the right one. In Section 7 we reuse most of the results
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presented in previous sections and reformulate them to fit into the lan-
guage of the β-shift. This allows us to use all the machinery developed
therein and the generalised results follows elegantly. Ideas and methods
in this section are also collected from the works of Persson and Schmel-
ing [18, 20]. We end Part I by giving some numerical presentations of
the function φβ .

Our work on the one-sided model is a specialisation and completes
earlier works by Urbanski [23], (see Section 3 for a more detailed survey
of Urbanski’s work).

In Part II we study the set of two-sided q-adically BAN . The set of
the two-sided BAN is a far more complex set than the set of one-sided
BAN . The results we achieve are the following,

Main Result 1.3 For an integer q ≥ 2 the function

φq : c 7→ dimH F 2(c, q)

is continuous, is partly self similar, has derivative zero Lebesgue a.e.,
the complementary zero-set, to where the derivative of φq is zero, has
full Hausdorff dimension. Moreover we give the complete description of
the intervals where the derivative of φq is zero.

As in the study of the one-sided model we transfer the problem of
the two-sided approximation into a problem in symbolic dynamics. The
ideas in the proofs of our main results follows mainly the same path as
in the first part of the one-sided model, but where more attention has
to be spent on details. In Section 11 we define the technical concept of
shift-bounded sequence which will be a key tool. We define a new kind of
minimal sequences in Section 12, present an algorithm to find them and
show how they cluster. As in the one-sided model we have for a minimal
sequence that we can associate a transition matrix Ac to the set F 2(c, q).
We prove that this matrix Ac will be primitive, for certain choices of the
sequence c, and therefore we can apply the classical Perron-Frobenius
Theorem 2.2 to show that the intervals obtained indeed are the right
one. The part ends with a few illustrations of the graph of φq.

Our result will extend and complete previous results given by Al-
louche, Cosnard, Moreira, Labarca and others, see [1, 2, 12, 14] and
Section 9, for more details.
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2 Prerequisites

2.1 General Symbolic Dynamics

For an integer q ≥ 2 let

S∞(q) = {0, 1, . . . , q − 1}N = {x = x1x2 . . . : xi ∈ {0, 1, . . . , q − 1}}

be the space of the one-sided infinite sequences on q symbols, equipped
with the product topology and the metric

δq(x,y) =
∞∑
i=1

|xi − yi|
qi

. (2.1)

Let similarly

S∗(q) = {x = x1x2 . . . xm : xi ∈ {0, 1, . . . , q − 1}}

be the set of all finite sequences on q symbols. There is a natural em-
bedding of the finite sequences into the set of infinite sequences, we can
see a finite sequence as an infinite sequence ending with zeros.

The word sequence will be used both for a finite sequence as well as
for an infinite one, but always based on a finite alphabet. Therefore we
set

S(q) = S∞(q) ∪ S∗(q),

that is, S(q), is the set of all one-sided sequences on q symbols.
There is a correspondence between S∞(q) and the real interval [0, 1],

by simply consider the q-nary expansion of a real number. That is, for
x ∈ [0, 1] we have

x =
∞∑
i=1

xi

qi
with xi ∈ {0, 1, . . . , q − 1} (2.2)

and we let x = x1x2x3 . . .. This correspondence is one-to-one except for
a countable set where it is two-to-one, but this will not cause us any
trouble. We introduce here some notation that will be used.

- By a concatenation we mean that we append a sequence to a finite
sequence, that is, the concatenation of u and v is uv , similarly
we write uu = u2.

13
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- We use the lexicographical order, ≤ and <, to compare sequences.
To compare sequences of different length we introduce the sym-
bol ε which has the property of being smaller than any symbol in
{0, 1, . . . , q − 1}. We can extend any finite sequence by concate-
nating infinitely many copies of ε.

- We say that x is a prefix of s if there exists a sequence u such that
s = xu and similarly we then say that u is a suffix of s. If u is
non-void then x is a proper prefix and similarly for a suffix.

- By s[k, n] we mean the subsequence s[k, n] = sksk+1 . . . sn of
length n − k + 1. For a set A of sequences the notation A[k, n]
is the set of subsequences, A[k, n] = {s[k, n] : s ∈ A}.

- The notation | · | will mean the length of a sequence, that is,
|s[k, n]| = n − k + 1. We will also use the | · |-notation for the
cardinality of a set.

- For a sequence x we define the left-shift σ by (σ(x))i = xi+1 and
we let σn = σ ◦ σn−1. If x is a finite sequence then σ|x|(x) is the
empty sequence.

- By the notation x∗ we mean the sequence (x∗)n = q − 1 − (x)n;
the bit-wise inverse of x. If x is finite then x∗ can be seen as the
inverse element of x in S∗(q).

- The notation x′ will mean the inverse when seeing x as a real
number, that is, the inverse element of x in S∞(q). If x is an
infinite sequence then x∗ = x′ but this equality does not hold in
the finite case, as we then have to cast x to an element in S∞(q),
i.e. we have to append zeros at the end. We have 1′ = (10∞)′ =
(q − 2)(q − 1)∞ = (q − 1) but 1∗ = (q − 2). We will always let
|x| = |x′|.

- For a finite sequence x, not ending with 0, the notation x̃ means
the sequence where the last symbol of x has been decreased by
one.

14
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- For a finite sequence x, not ending with (q − 1), the notation x̂
means the sequence where the last symbol of x has been increased
by one.

Let A be a square {0, 1} matrix with rows and columns indexed by
{0, 1, . . . , n−1}. The matrix A defines a closed, shift invariant subset SA

of S∞(n). The subset SA defined by A is defined by selecting sequence
as

SA =
{
x ∈ S∞(n) : Axixi+1 = 1 for all i > 0

}
.

The dynamical system and the restriction of the shift transformation is
the one-sided shift of finite type defined by A. We call such a matrix A
a transition matrix.

Example 2.1 The matrix

A =

 0 1 1
1 0 1
1 1 0

 ,

where the rows and columns are indexed in the order 0, 1, 2, defines the
shift SA ⊂ S∞(3) of sequences which does not contain a repetition of a
symbol, as Aaa = 0 for a ∈ {0, 1, 2}. �

The representation of a subshift via a transition matrix is not unique,
two different matrices A and B may describe the same subshift. We say
that a transition matrix A is irreducible if there for each pair of indices
i, j exists an n such that (An)ij > 0. Similarly, if there is an m such that
(Am)ij > 0 for all pairs i, j we say that the matrix is primitive. Clearly
primitivity implies irreducibility. A subshift of finite type is topologically
transitive if and only if it can be represented by an irreducible transition
matrix and a subshift of finite type is topologically mixing if and only if
it can be represented by a primitive transition matrix.

For irreducible transition matrices we have the Perron-Frobenius the-
orem, (see [10, 16]).

Theorem 2.2 (Perron-Frobenius) Suppose A is a nonnegative, sq-
uare matrix. If A is irreducible there exists a real eigenvalue λ > 0 such
that

15
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1. λ is a simple root of the characteristic polynomial

2. λ has strictly positive left and right eigenvectors

3. the eigenvectors for λ are unique up to constant multiple

4. λ > |µ|, where µ is any other eigenvalue

5. if 0 ≤ B ≤ A (entry by entry) and β is an eigenvalue for B then
|β| ≤ λ and equality occurs if and only if B = A.

The special eigenvalue λ, is the Perron value of the matrix A. A positive
eigenvector corresponding to λ is called a Perron eigenvector.

Note that the notion of Perron value coincides for non-negative irre-
ducible matrices with the notion of spectral radius ρ(A).

By coding each symbol in the alphabet {0, 1, . . . , n− 1} with a finite
word out of q-symbols, we can transfer a sequence of n symbols into a
q-nary sequence. We may assume that all these coding words used in
the translation have the same length m. Then we have that the rows
and columns in a transition matrix can be indexed with finite words of
length m. Hence for uk = x[k, k +m− 1] and vk = x[k + 1, k +m] the
set

{x ∈ S∞(q) : Auk vk
= 1 for all k > 0}

describes a shift of finite type.

Example 2.3 For a binary sequence x consider transitions of length 2,
that is, uk = x[k, k + 1] and vk = x[k + 1, k + 2].

x = x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .︸ ︷︷ ︸
u3

v3︷ ︸︸ ︷

Then the matrix

A =


0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0

10

00

01

10

11

00 01 10 11

16
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defines the shift SA ⊂ S∞(2) of sequences which does not contain a cube
of a symbol. This because the sequence 000 would give rise to uk = 00
and vk = 00. But as A00,00 = 0 we have that 000 is not an allowed
subsequence of sequences in SA ⊂ S∞(2). Similarly A11,11 = 0 gives
that 111 is not an allowed subsequence. �

Example 2.4 For a finite sequence c let

E(c) = {x ∈ S∞(q) : c′ ≥ σn(x) ≥ c for all n ≥ 0}.

By considering the set of prefixes we can describe the set E(c) by a
transition matrix A. An element s ∈ E(c)[1, |c|] defines the entry
As[1,|c|−1],s[2,|c|] = 1. Note that we can also consider E(c)[1, k] for some
k > |c|, but we then only obtain a transition matrix of greater size. �

2.2 Dimension

Definition 2.5 Let s ∈ [0,∞]. The s-dimensional Hausdorff measure
Hs(Y) of a subset of a metric space X is defined by

Hs(Y ) = lim
ε→0

inf

{ ∞∑
1=1

diam(Ui)s : Y ⊂
∞⋃
i=1

Ui , sup
i

diam(Ui) ≤ ε

}
.

The unique s0 such that

Hs(Y ) =
{
∞ for s < s0
0 for s > s0

we call the Hausdorff dimension of the set Y and it will be denoted by
dimH Y .

A way of estimating the Hausdorff dimension of a set is to use the
connection between the Hölder exponent and the Hausdorff dimension.
The following result is well known.

Proposition 2.6 Let X ⊂ Rn and suppose that f : X → Rm satisfies a
Hölder condition

|f(x)− f(y)| ≤ C |x− y|α (x, y ∈ X).

Then dimH f(X) ≤ 1
α dimH X.

17
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For a deeper discussion of dimension theory and methods used there-
in see Falconer’s book [8] or Pesin’s book [17] on dimension theory.

Let E ⊂ S∞(q) and recall that by E[1, n] we denote the set of prefixes
of length n of sequences in E, that is, E[1, n] = {x[1, n] : x ∈ E}.

Definition 2.7 We define the topological entropy htop of the subshift of
finite type E as the growth rate of the number of sequences allowed as
the length n increases,

htop(E) = lim
n→∞

1
n

log
∣∣E[1, n]

∣∣,
where | · | denotes the cardinality of a set.

The existence of the above limit follows by simply noticing the sub-
additivity property of the function n 7→ log |E[1, n]|:

log
∣∣E[1, n+m]

∣∣ ≤ log
∣∣E[1, n]

∣∣+ log
∣∣E[1,m]

∣∣.
The existence of the limit also implies that there exists constants k1

and k2 with k1λ
n ≤ |E[1, n]| ≤ k2λ

n for all n and where log λ is the
topological entropy of E.

Theorem 2.8 Let E ⊂ S∞(q) be a subshift of finite type described by
the transition matrix AE, with the spectral radius ρ(AE). Then

1. htop(E) = log ρ(AE)

2. dimH E =
log ρ(AE)

log q
.

Theorem 2.8 gives a link between the topological entropy and the Haus-
dorff dimension via transition matrices for subshifts of finite type. For
a proof Theorem 2.8 see Pesin’s book [17] on dimension theory.

18
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3 Introduction

In this part we are going to study a special case of diophantine approxi-
mation, one-sided approximation by real numbers of the form m

βn for the
real β > 1 and an integer m. Similar to the approximation by rationals
in (1.1) we set the sequences {xn} and {ln} to be

xn,m =
m

βn
and ln =

c

βn
,

for 0 ≤ c ≤ 1. We will turn our interest to the same type of questions as
in the classical approximation case and look at the set of badly approx-
imable numbers under these special form of {xn} and {ln}. We define
F 1(c, β) to be the set

F 1(c, β) =
{
x ∈ S : x− m

βn
<

c

βn
(mod 1) finitely often

}
. (3.1)

As we are going to study dimensional properties of F 1(c, β) we can
restrict ourselves to the case when the condition in (3.1) is not finitely
often fulfilled, but is never fulfilled. So we introduce F (c, β) by

F (c, β) = {x ∈ S : βnx ≥ c (mod 1) for all n ≥ 0} . (3.2)

Then F 1(c, β) is the countable union of preimages of F (c, β) under
multiplication by β. Hence we have dimH F 1(c, β) = dimH F (c, β).
For β > 1 we define the dimension function φβ : [0, 1] → [0, 1] by
φβ(c) = dimH F (c, β). The main results concerning the function φβ are,

Main Result 3.1 For β > 1 the function φβ : c 7→ dimH F (c, β) is
continuous, has derivative zero Lebesgue a.e. and the complementary
zero-set, to where the derivative of φβ is zero, has full Hausdorff dimen-
sion. Moreover we give the complete description of the intervals where
the derivative of φβ is zero.

In [23], Urbanski studies the more general set

Kg(c) = {x ∈ S : gn(x) ≥ c for all n ≥ 0} ,

where g : S → S is a C2 expanding and orientation preserving map. The
results given in [23] include the continuity of the map c 7→ dimH Kg(c),
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and that this map has derivative zero Lebesgue a.e., but leaves out the
complete characterisation of the intervals where the dimension remains
unchanged.

In Section 5 we are going to consider the case when we restrict our-
selves to have β = q ∈ N and strictly larger than 1. We prove there, in a
simpler way than presented by Urbanski [23], that the map φq is contin-
uous, has derivative zero Lebesgue a.e. and we characterise completely
the intervals where the dimension remains unchanged. The main tool in
proving these results is the classical Perron-Frobenius Theorem 2.2 for
irreducible transition matrices.

In Section 7 we reprove and refine the results obtained for the map
φβ in Section 5, that is, we prove that the results achieved for β = q also
can be obtained for an arbitrary real β > 1. This refinement heavily
relies on result on the β-shift.

4 Minimal Sequences

This section is devoted to study certain types of sequences, which will
serve as main tools in proving our results in the forthcoming sections.
We start with a simple, but fundamental lemma.

Lemma 4.1 Let s ∈ S∗(q). Then any sequence x ∈ S∞(q) fulfils
σn(x) ≥ s for all n ≥ 0 if and only if σn(x) ≥ s∞ for all n ≥ 0.

Proof: It is clear that if σn(x) ≥ s∞ for n ≥ 0 then σn(x) ≥ s for n ≥ 0
since s∞ ≥ s. Conversely, assume there is an n such that σn(x) < s∞.
Let k be the first position where σn(x) differs from s∞.

σn(x) =

s∞ = s s s s

k

We can write k = m|s|+ r for some positive integers m, r with r < |s|.
But then we must have σn+m|s|(x) < s. �
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We are interested in looking at sequences s where we have a maximal
difference between s and s∞. Therefore we introduce the notion of
minimal prefixes and minimal sequences.

Definition 4.2 For a sequence s ∈ S(q) we define the integer ns, which
may be infinite, by

ns = inf
{
n ∈ N : s[1, n]∞ ≥ s

}
.

We say that s[1, ns] is a minimal prefix of s and if s[1, ns] = s or ns

undefined we say that s is a minimal sequence or simply just minimal.

Example 4.3 The sequence s1 = 001(01)∞ lacks a finite minimal
prefix, hence it is an infinite minimal sequence, while s2 = 01(001)∞

has the finite minimal prefix 01. �

Lemma 4.4 A finite sequence s is minimal if and only if σn(s) > s
for all 0 < n < |s|. An infinite sequence s is minimal if and only if
σn(s) > s for all n > 0.

Proof: For the finite case, assume s is a finite minimal sequence. For
0 < n < |s| there is a maximal N such that s = s[1, n]Nd for some
sequence d with s[1, n] < d. This clearly implies σn(s) > s .

Conversely, assume for contradiction that there is an 0 < n < |s|
such that s[1, n]∞ > s. Then there is a smallest N and a largest K such
that s[1, n]N > s[1, n]Kd = s, where the sequence d fulfils d < s[1, n].
But then σKn(s) < s, a contradiction.

For the infinite case, let s fulfil σn(s) > s for all n > 0. Assume
that s has a finite minimal prefix. There is a smallest N such that
s[1, ns]N > s, since otherwise we would have s[1, ns]∞ = s . Hence,
for some sequence d we have s = s[1, ns]N−1d with d < s[1, ns]. By
shifting ns times we have σns(s) < s, a contradiction.

Conversely, if we for some n have σn(s) ≤ s then we have s ≤
s[1, n]∞, and it follows that s has a finite minimal prefix. �

Lemma 4.5 Let u and w be a prefix and a suffix respectively of the
finite minimal prefix s[1, ns] such that |u| = |w| ≤ ns/2. Then u < w.
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Proof: We have for some sequence v, which may be empty, s[1, ns] =
uvw. Assume for contradiction that u ≥ w. If the assumed inequality
is strict, that is, u > w then we would have,

s[1, ns]∞ = (uvw)∞ < uvu < (uv)∞,

which contradicts the definition of ns, as this gives a shorter prefix
bounding s. Therefore we shall from now-on assume that u = w.

First consider the case when u and v are of the same length. If u ≥ v
then clearly s[1, ns]∞ ≤ u∞ which again gives a contradiction to the
minimality of ns. Similarly if u < v we would have s[1, ns]∞ < (uv)∞.

For the case when |u| < |v| we make the implicit definition of the
sequence v1 by factoring out all the u-prefixes, that is, v = un1v1. Sim-
ilarly we define the sequence u1 by u = vm1

1 u1. These prefix arguments
can now be recursively repeated, that is, u1 might be a prefix of v1, and
thereby we have to continue to define new sequences. By doing so we
have defined a process by taking shorter and shorter prefixes. As we are
dealing with sequences of finite length, and in each step of the process
we factor out a sequence of positive length the process must end after a
finite number of steps.

Assume that the process ends after an even number of steps. We
then have, by retracing backwards, for some sequences ∆u and ∆v,

u = vmk
k uk ∆u uk, v = vmk

k uk ∆v vk.

Using this factorisation we see that if uk ≤ vk we would have

s[1, ns]∞ =
(
(vmk

k uk ∆u uk)(v
mk
k uk ∆v vk)(v

mk
k uk ∆u uk)

)∞
≤ (vk)∞,

since uk is not a prefix of vk and then ukz ≤ vk for any sequence z.
If we would have uk > vk then notice that in the process the uk’s are
separated by at least vmk

k . This gives

s[1, ns]∞ =
(
(vmk

k uk ∆u uk)(v
mk
k uk ∆v vk)(v

mk
k uk ∆u uk)

)∞
≤ (vmk

k uk)∞,

which concludes the case of even steps. The case when the process ends
after an odd number of steps is treated in the same way. The case when
|u| > |v| follows a similar pattern. �
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Lemma 4.6 A minimal prefix is a minimal sequence, i.e. s[1,m]∞ <
s[1, ns] for m < ns.

Proof: The statement is clear if ns = ∞. Hence we only have to deal
with the finite case. Let ks = ns[1,ns], that is, ks is the smallest integer
such that s[1, ks]∞ ≥ s[1, ns]. Assume for contradiction that ks < ns.
As s[1, ns] is of finite length there is a smallest positive integer N such
that s[1, ks]N ≥ s[1, ns]. The case of equality can be out-ruled, since
otherwise s[1, ns] would be a repetition of s[1, ks], which contradicts the
definition of ns. Hence we have

s[1, ks]N > s[1, ns]. (4.1)

Again by the definition of ns it follows that N must be chosen so that
Nks is strictly larger than ns, since otherwise we would have found a
shorter bounding prefix of s. On the other hand, as any minimal prefix
ends with a non-zero symbol, it follows that this is also a sufficient choice
of N . Hence we have

ks(N − 1) < ns < ksN.

As s[1, ns] is the minimal prefix of s we have s[1, ks]∞ < s[1, ns]∞. This
implies the inequality, by considering prefixes,(

s[1, ks]N
)
[1, ns] ≤ s[1, ns]. (4.2)

Combining (4.1) and (4.2) shows that
(
s[1, ks]N

)
[1, ns] must be equal

to s[1, ns]. Now define the positive integer p by

p = min
{
Nks − ns, ns − (N − 1)ks

}
.

This number p is the length of the smallest of the parts, of the last
repetition of s[1, ks], that either extends beyond or overlaps s[1, ns].

s[1, ns] = . . .

ns

s[1, ks]
N = . . .

p

Nks

s[1, ns] = . . .

ns

s[1, ks]
N = . . .

p

(N − 1)ks
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Denote by u = s[1, p] and w = s[ks − p+ 1, ks]. We can then for some
sequence v write s[1, ks] = uvw. By the equality in the first positions it
follows that then s[1, ns] must be of the form, depending on the choice
in the definition of p,

s[1, ns] =

{
(uvw)N−1u if ns − ks(N − 1) < Nks − ns,

(uvw)N−1uv otherwise.

But this is impossible as Lemma 4.5 would imply u < u, or uv < uv, a
contradiction. �

Corollary 4.7 Let s be a finite minimal sequence. Then all sequences
s ≤ x ≤ s∞ have the same minimal prefix, i.e. s = x[1, nx].

Proof: If we assume nx < ns then we have by Lemma 4.6 that x ≤
x[1, nx]∞ = s[1, nx]∞ < s[1, ns] = s, a contradiction. Similarly, if
nx > ns then again by Lemma 4.6 we have that s∞ = x[1, ns]∞ <
x[1, nx] ≤ x, again a contradiction. �

We introduce here two sequences ak and bk, which will be crutial to
us in proving our theorems. For a real number β > 1 we let u = dβe−1.
Then for a sequence s with finite minimal prefix we define

ak = ak(s, β) = s[1, ns − 1]
(
(s)ns − 1

)
uk,

bk = bk(s, β) = s[1, ns]ku.
(4.3)

Let us give an example of ak and bk sequences.

Example 4.8 The binary sequence s = 0011 is a minimal sequence and
we have ak(s, 2) = 0010(1)k and bk(s, 2) = (0011)k1. The ternary se-
quence u = 0011 is also a minimal sequence. Hence ak(u, 3) = 0010(2)k

and bk(u, 3) = (0011)k2. Similarly, the ternary sequence v = 1122 is
a minimal sequence, and therefore ak(v, 3) = 1121(2)k and bk(v, 3) =
(1122)k2. �

It is clear from its definition that bk is a minimal sequence for all
k ≥ 0. Moreover we have

Lemma 4.9 For β > 1 the sequence ak(s, β) is minimal for all k larger
than some N .
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Proof: Assume for contradiction that nak
is less than ns− 1 + k = |ak|,

that is, ak is not minimal. If nak
would be equal to ns it would contradict

the minimality of ak[1, nak
].

If we assume that nak
> ns then, for the symbol u = dβe − 1, we

would have that

ak = s[1, ns − 1]
(
(s)ns − 1

)
uk > ak[1, nak

]∞

as the sequences ak and s are equal in the first nak
positions, a contradic-

tion to the assumed minimality of ak[1, nak
], since a minimal sequence

cannot start and end with the same symbol.

ak = u u u u u u u

ak[1, nak ]∞ =

nak

Finally, if nak
< ns then we have

ak = s[1, ns − 1]
(
(s)ns − 1

)
uk ≤ ak[1, nak

]∞ = s[1, nak
]∞. (4.4)

But by Lemma 4.6 we have the inequality

s > s[1, nak
]∞ (4.5)

Combining (4.4) and (4.5) we see that when decreasing the symbol at
position ns the inequality is reversed.

ak = u u u u u u u u u

ak[1, nak ]∞ =

ns

This implies that ak is equal to ak[1, nak
]∞ in the first ns positions,

that is,
ak[1, ns] =

(
ak[1, nak

]∞
)
[1, ns].

If now N is chosen large enough then this implies that ak[1, nak
] must

be larger than a block of u’s of length nak
, which is not possible. �
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Remark: Lemma 4.9 shows that a minimal sequence is a limit point of
minimal sequences.

We end the section by a result on the set of infinite minimal se-
quences. Let IM (q) be the set of all infinite minimal sequences on a q
letter alphabet. By Lemma 4.4 we can characterise these sequences via
the left-shift, that is,

IM (q) = {x ∈ S∞(q) : σn(x) > x for all n ≥ 1} (4.6)

Lemma 4.10 The set IM (q) has Lebesgue measure zero.

Proof: Let λ be the Lebesgue measure. As λ is invariant under x 7→ qx
on the unit circle λ-almost every x has a dense orbit. Hence as IM (q)
is a set of x’s with bounded orbit it must have Lebesgue measure 0. �

5 Main Results via Perron-Frobenius

Throughout this section let q ≥ 2 be a fixed integer. From the expansion
(2.2) of a real number x ∈ [0, 1] into an integer base q we see that we
can redefine the set F (c, β), defined in (3.2), into a set of sequences of q
symbols. We have

F (c, q) = {x ∈ S∞(q) : σn(x) ≥ c for all n ≥ 0},

where clearly c is the sequence from the q-nary expansion of the real
number c ∈ [0, 1]. We define the intervals I(c, q) via the concept of
minimal prefixes, that is, we let

I(c, q) =
{
x ∈ S∞(q) : c[1, nc] ≤ x ≤ c[1, nc]∞

}
The next theorem gives that the definition of I(c, q) is independent of
the choice of the representative c.

Theorem 5.1 For any d ∈ I(c, q) we have I(d, q) = I(c, q).

Proof: We may assume that c is a finite minimal sequence. Let d ∈
I(c, q). Then Corollary 4.7 gives that d[1, nd] = c, and therefore we get
I(d, q) = I(c, q). �

We can now state a first result of the map φq(c) = dimH F (c, q).
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Theorem 5.2 The derivative of φq is zero Lebesgue a.e.

Proof: The sequences which give rise to one-point intervals I(c, q) = {c}
are precisely the sequences c ∈ IM (q). As IM (q) has Lebesgue measure
0, by Lemma 4.10 we must have that the complementary set, the set
formed by the intervals, has full Lebesgue measure. �

Lemma 5.3 For any c ∈ S(q) the dynamical system σ : F (c, q) →
F (c, q) is topologically mixing.

Proof: Let U ⊂ F (c, q) be the cylinder-set defined by [u1u2 . . . uk] and
let similarly V ⊂ F (c, q) be the cylinder-set defined by [v1v2 . . . vj ]. By
choosing the number N sufficiently large the cylinder-set [u1u2 . . . uk (q−
1)Nv1v2 . . . vj ] is a subset of U . This shows that the intersection σn(U)∩
V is non-empty for all n ≥ N . �

For the next corollary recall from Example 2.4 how to associate a
subshift with a transition matrix.

Corollary 5.4 Let c ∈ S(q) be such that F (c, q) is a subshift of finite
type. Then the transition matrix Ac corresponding to F (c, q) is primi-
tive.

Theorem 5.5 The interval I(c, q) is the largest interval I on which
φq(d) = φq(c) for d ∈ I.

Proof: We may assume that c is a finite minimal sequence. From
Lemma 4.1 we have that F (c, q) = F (c∞, q), and hence dimH F (c, q) =
dimH F (c∞, q).

From Lemma 4.9 the sequences {ak(c, q)} can be assumed minimal.
Let Aak

be a transition matrix corresponding to F (ak, q) and let Ac be
a transition matrix corresponding to F (c, q). We can scale them to be
of the same size if needed. Since F (ak, q) \ F (c, q) is non-void, we have
(Aak

)ij ≥ (Ac)ij , entry by entry, where there is one pair of indices r, s
such that the inequality is strict. As Aak

is irreducible it follows from
the Perron-Frobenius Theorem 2.2 that φq(ak) > φq(c).

That we cannot go beyond the right endpoint of I(c, q) follows by
the same arguments when considering the sequences {bk(c, q)}. �
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Example 5.6 Let c = 0.25 and q = 2. Then c corresponds to the
sequence c = 01, which is a minimal sequence, and we have that a
transition matrix connected to F (c, q) is

Ac =
(

0 1
1 1

)
The spectral radius of the transition matrix Ac gives

dimH F (c, q) = dimH F (01, 2) =
log 1+

√
5

2

log 2
≈ 0.69424.

Lemma 4.1 gives that F (01, q) = F
(
(01)∞, q

)
, i.e., I(c, q) = [01, (01)∞],

which correspond to the real interval [14 ,
1
3 ]. �

The drawback by finding the dimension of F (c, q) via a transition
matrix is that the size of the transition matrix is q|c|−1 × q|c|−1, which
clearly grows out of hand for long sequences in a large alphabet.

Lemma 5.7 Let c ∈ S(q). Then dimH F (c, q) = 0 if and only if c ≥
(q − 2)(q − 1)∞

Proof: Let cn = (q− 2)(q− 1)n for n ≥ 0 and put c∞ = (q− 2)(q− 1)∞.
Then the set

Qn =
{
(q − 2)(q − 1)n, (q − 1)n+1

}N

is a subset of F (cn, q). Let θ be the map
(
(q − 2)(q − 1)n, (q − 1)n+1

)
7→

(0, 1). This gives, by Proposition 2.6,

dimH F (cn, q) ≥ dimF Q

=
1

n+ 1
log 2
log q

dimH S∞(2)

=
1

n+ 1
log 2
log q

> 0.

Hence, dimH F (c, q) > 0 for c < c∞. Conversely, we have

F (c∞, q) = {(q − 1)∞} ∪
∞⋃

n=0

{(q − 1)nc∞}.

It is clear that F (c∞, q) is a countable set and therefore dimH F (c, q) = 0
for c ≥ c∞, which concludes the proof. �

30



On Numbers Badly Approximable by q-adic Rationals

Corollary 5.8 For fixed q ≥ 2 we have dimH F (c, q) = 0 if and only if
c ≥ 1− 1

q .

Next let us turn to the question of the continuity of the map φq.
Recall that by |·| we mean the cardinality of a set. We need the following
estimating lemma.

Lemma 5.9 Let c ∈ S(q) be a finite minimal sequence and such that
c 6= q − 1. Put ak = ak(c, q) and bk = bk(c, q).

1. There is a constant C such that |F (ak, q)[1, k]| ≤ C|F (c, q)[1, k]|
for all k ≥ 1.

2. Given k large enough, there is a constant C such that for all n ≥ 1
we have ∣∣F (bk, q)[1, n]

∣∣ ≥ C
∣∣F (c, q)[1, n]

∣∣ (1− 1
k

)n

.

Proof: (1). A sequence d ∈ F (ak, q)[1, k]\F (c, q)[1, k], is a sequence that
must start with a prefix of a sequence in F (c, q)[1, k], but at some point
it must have a subsequence which is smaller than c, that is, there exists
an n such that σn(d) < c. For this n we must also have σn(d) ≥ ak.
Hence we have

∣∣F (ak, q)[1, k]
∣∣ ≤

k∑
i=1

∣∣F (c, q)[1, i]
∣∣

≤ k1

k∑
i=1

λi
c

≤ k2λ
k
c

≤ C
∣∣F (c, q)[1, k]

∣∣
for some constants k1 and k2 and where log(λc) is the topological entropy
of F (c, q).

(2). Similarly, a sequences d ∈ F (c, q)[1, n]\F (bk, q)[1, n] must contain,
at least once, the pattern u = ckv, where c1 ≤ v < q − 1. To see
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this, the sequence bk is strictly larger than u and hence no sequence
in F (bk, q)[1, n] can contain the subsequence u. Conversely, as u is
larger than c∞[1, |u|] we have that u is an allowed pattern in sequences
in F (c, q)[1, n] The number of sequences of length n that contains this
pattern precisely p times, is bounded by

q

(
n− p|u|

p

)∣∣F (bk, q) [1, n− p|u|]
∣∣,

which we obtain by looking at the number of places the pattern u can
be placed in. We have by summing up for a k large enough

C
∣∣F (c,q)[1, n]

∣∣ ≤
≤ λn

bk
+
(
n− |u|

1

)
λ

n−|u|
bk

+
(
n− 2|u|

2

)
λ

n−2|u|
bk

+ . . .

≤ λn
bk

1 +
(
n

1

)
1

λ
|u|
bk

+
(
n

2

)
1

λ
2|u|
bk

+ . . .



≤ λn
bk

1 +
1

λ
|u|
bk

n

≤ λn
bk

(
1 +

1
k

)n

,

as by Lemma 5.7 we have λbk
> 1, which gives the desired result and

concludes the lemma. �

We can now prove the main result on continuity.

Theorem 5.10 The map φq is continuous.

Proof: By Theorem 2.8 we just have to show that the entropy of F (c, q)
depends continuously on c. It is clear that for any sequence c the es-
timate |F (c, q)[1, rn]| ≤ |F (c, q)[1, n]|r holds. Let ak = ak(c, q) and
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bk = bk(c, q). Hence by Lemma 5.9 it follows that

htop

(
F (c, q)

)
≤ lim

k→∞
htop

(
F (ak, q)

)
= lim

k→∞
lim

n→∞

1
n

log
∣∣F (ak, q)[1, n]

∣∣
= lim

k→∞
lim

r→∞

1
rk

log
∣∣F (ak, q)[1, rk]

∣∣
≤ lim

k→∞
lim

p→∞

1
rk

log
∣∣F (ak, q)[1, k]

∣∣r
≤ lim

k→∞

1
k

logC
∣∣F (c, q)[1, k]

∣∣
= htop

(
F (c, q)

)
,

which shows the left-continuity of the entropy in the left endpoint of the
interval I(c, q). The right-continuity follows trivially as the entropy is
constant in a neighbourhood to the right of this point. In the same way
the left-continuity in the right endpoint of I(c, q) is also clear. Again by
Lemma 5.9 we have

htop

(
F (c, q)

)
≥ lim

k→∞
htop

(
F (bk, q)

)
= lim

k→∞
lim

n→∞

1
n

log
∣∣F (bk, q)[1, n]

∣∣
≥ lim

k→∞
lim

n→∞

1
n

log
(
C
∣∣F (c, q)[1, n]

∣∣ (1− 1
k

)n)
= htop

(
F (c, q)

)
+ lim

k→∞
log
(

1− 1
k

)
= htop

(
F (c, q)

)
,

and the right-continuity in the right endpoints follows and concludes the
theorem. �

We end this section by some remarks on the recursive embedding of
F (c, q) into F (d, q + 1).
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Definition 5.11 Let be R the re-alphabetisation function such that for
x ∈ S(q) we have R(x) ∈ S(q + 1) and R(x)i = xi + 1.

Theorem 5.12 Let c ∈ S(q). Then

R(F (c, q)) = F (R(c), q + 1).

Proof: It is clear that R(F (c, q)) ⊂ F (R(c), q + 1). For the reversed
inclusion, let x ∈ F (R(c), q + 1). If x would contain a 0 at position n
then σn(x) < R(c) which would contradict x ∈ F (R(c), q + 1). Hence
R−1(x) is well defined and R−1(x) ∈ S∞(q). If there exists an m such
that σm(R−1(x)) < c then we would have R(σm(R−1(x))) = σm(x) <
R(c), a contradiction to our assumption. Hence R−1(x) ∈ F (c, q) and
therefore R(F (c, q)) ⊃ F (R(c), q + 1). �

Corollary 5.13 Let c ∈ S(q). Then

dimH F (c, q) =
log(q + 1)

log q
dimH F (R(c), q + 1).

Proof: Apply the metric defined in (2.1) and Proposition 2.6 to the
result of Theorem 5.11. �

6 The β-shift

The field of β-shift originated in the late fifties by Rényi [19] who in-
troduced the representation of a real number with an arbitrary base
β > 1. One of the most studied problems in this field is the link be-
tween expansions to base β and ergodic properties of the corresponding
β-shift.

More precisely, the definition of the β-expansion, where [·] means the
integral part, is the following;

Definition 6.1 The expansion of a number x ∈ [0, 1] in base β, or β-
expansion, is a sequence x of integers out of {0, 1, . . . , dβe − 1} such
that

xn = [βTn−1
β (x)], n ≥ 1,

where Tβ : [0, 1] → [0, 1) is the transformation Tβ(x) = βx (mod 1).
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Definition 6.2 We denote by d(x, β) the β-expansion of x in base β

Definition 6.3 The closure of the set of all β-expansions of x ∈ [0, 1]
is called the β-shift, Sβ.

The expansion of 1 in base β turns out to be crucial for characterising
the β-shift. Parry [15] proved that Sβ is totally determined by the
expansion of 1.

Theorem 6.4 (Parry) If d(1, β) is not finite (i.e. it will not terminate
with zeros only), then s ∈ S∞(dβe − 1) belongs to Sβ if and only if

σn(s) < d(1, β) for all n ≥ 1.

If d(1, β) = i = i1i2 . . . iM0∞ then s belongs to Sβ if and only if

σn(s) <
(
i1i2 . . . iM−1(iM − 1)

)∞ for all n ≥ 1. (6.1)

Moreover Parry proved the following theorem.

Theorem 6.5 (Parry) A sequence s is an expansion of 1 for some β
if and only if

σn(s) < s for all n ≥ 1

and then β is unique. Moreover the map Ξ : β 7→ d(1, β) is monotone
increasing.

7 Main Results via the β-shift

Recall the definition of the set F (c, β) from (3.2) for any β > 1,

F (c, β) = {x ∈ S : βnx ≥ c (mod 1) for all n ≥ 0} .

We can clearly choose to study the symmetrically identical set

F ′(c, β) = {x ∈ S : βnx ≤ 1− c (mod 1) for all n ≥ 0}

By using the β-expansion of real numbers we may turn into dealing with
a set of sequences. That is, we let

Fβ(c) = {x ∈ Sβ : σn(x) < d(1− c, β) for all n ≥ 0} . (7.1)
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Note that we may change the inequality in (7.1) to be strict, as this
only removes the periodic sequences, which are countable and hence
does not affect the dimension. We emphasise also that dimH F (c, β) =
dimH Fβ(c).

From Lemma 4.1 and Lemma 4.4 we have the following two corol-
laries by, simply consider inverse sequences.

Corollary 7.1 Let s ∈ S∗(dβe − 1) be a finite sequence of length n
not ending with a 0. Then σn(x∗) ≤ (s̃)∗ for all n ≥ 0 if and only if
σn(x∗) ≤ ((s̃)∗)∞ for all n ≥ 0.

Corollary 7.2 A finite sequence s ∈ S∗(dβe − 1) is minimal if and
only if σn((s̃)∗) < (s̃)∗ for all 0 < n < |s|. An infinite sequence s ∈
S∞(dβe − 1) is minimal if and only if σn(s∗) < s∗ for all n > 0.

For c ∈ [0, 1] let s = d(1 − c, β). If s is finite let u be the unique
minimal prefix of (s̃)∗ and if s is infinite let u be the minimal prefix of
s∗. If u is finite define

m(c, β) = 1−
|u|∑
i=1

((ũ)∗)i

βi
and M(c, β) = 1−

∞∑
i=1

((u∞)∗)i

βi
.

In the case when u is an infinite sequence we have that m(c, β) and
M(c, β) coincides. That is,

m(c, β) = M(c, β) = 1−
∞∑
i=1

(u∗)i

βi
.

Theorem 7.3 For any c ∈ [0, 1] the real numbers m(c, β) and M(c, β)
are unique and such that Fβ(c) = Fβ(m(c, β)) and d(1 −m(c, β), β) =
d(1, B(c, β)) with a unique B(c, β) ≤ β.

Proof: The theorem follows from Parry’s Theorem 6.5, Corollary 7.1
and Corollary 7.2. �

The statement of Theorem 7.3 says that if given the reals c ∈ (0, 1)
and β > 1 there is a c0 = m(c, β) such that Fβ(c) = Fβ(c0). Moreover
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this special c0 is such that the β-expansion of 1 − c0, the sequence s,
is such that σn(s) < s, that is, it is the expansion of 1 for some β0 =
B(c, β). This means that Fβ0(c0) is the β-shift Sβ0 .

Definition 7.4 We shall from now on use the notation B(c, β) for the
unique β-value connected to c as defined in Theorem 7.3.

Theorem 7.5 For c ∈ [0, 1] we have

dimH Fβ(c) =
logB(c, β)

log β
.

Proof: Given c ∈ [0, 1] there exists, by Theorem 7.3, an m(c, β) such
that Fβ(c) = Fβ(m(c, β)) and d(1 −m(c, β), β) = d(1, B(c, β)). Hence,
by (7.1) and Parry’s Theorem 6.4, Fβ(m(c, β)) = SB(c,β) is a β-shift
contained in Sβ. This gives

dimH Fβ(c) = dimH Fβ(m(c, β)) =
logB(c, β)

log β
dimH Sβ ,

which completes the proof. �

We define the intervals Iβ(c) via the functions m and M . That is,
we let

Iβ(c) = [m(c, β),M(c, β)]

From Corollary 4.7 we have that the definition of Iβ(c) is independent of
the choice of the representative c. To summarise, (compare to Theorem
5.1),

Theorem 7.6 For any d ∈ Iβ(c) we have Iβ(d) = Iβ(c).

Theorem 7.7 The interval Iβ(c) is the largest interval I such that
Fβ(d) = Fβ(c) for all d ∈ I.

Proof: From Corollary 7.1 it follows that Fβ(d) = Fβ(c) for all d ∈
Iβ(c). To see that we can not extend the interval further follows from
that minimal sequences are limit points of minimal sequences and from
Theorem 7.5. �
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Example 7.8 Let β = 2.0 and let c = 0.25. Then d(1 − 0.25, 2) =
110∞ = d(1, 1

2(1+
√

5)), since 1
2(1+

√
5) is the largest root of the equation

1 = 1
x + 1

x2 . Hence

dimH Fβ(c) = dimH F2(0.25) =
log 1+

√
5

2

log 2
≈ 0.69424.

Moreover we have m(0.25, 2) = 1
4 and M(0.25, 2) = 1

3 from the sequence
(10)∞. (Compare this to Example 5.6). �

Example 7.9 Let β = 1.7 and let c = 0.25. Then d(1 − 0.25, 1.7) =
100101000 . . . with the inverted minimal prefix 101. This gives

m(0.25, 1.7) = 1− 1
1.7

− 1
1.73

≈ 0.20822

and and the sequence (100)∞ gives M(0.25, 1.7) ≈ 0.26144. To find the
value B(0.25, 1, 7) ≈ 1.46557 we have to solve the equation 1 = 1

x −
1
x3 .

Hence

dimH Fβ(c) = dimH F1.7(0.25) ≈ log 1.46557
log 1.7

≈ 0.72036.

�

Example 7.10 Again let c = 0.25. To find the β satisfying d(1 −
0.25, β) = 200(20)∞ we have to solve the equation 0.75 = 2

β + 2
β4 + 2

β6 +
2
β8 + . . ., which gives β ≈ 2.77690. We clearly have m(c, β) = M(c, β) =
0.25. The equation

1 =
2
x

+
2
x4

+
2
x6

+
2
x8

+ . . . ,

gives B(c, β) ≈ 2.16286. Hence

dimH Fβ(c) ≈ dimH F2.77690(0.25) ≈ log 2.16286
log 2.77690

≈ 0.75532.

�

Remark: From Example 7.8, Example 7.9 and Example 7.10 we see that
the function β 7→ dimFβ(c) is not monotone for fixed c, (see also Figure
4).
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Theorem 7.11 For fixed β > 1 the function c 7→ dimH Fβ(c) is contin-
uous.

Proof: Let c be such that d(1 − c, β) = d(1, B(c, β)). Then by the
existence of the sequences {ak(c, β)} and {bk(c, β)} from (4.3) there
exists a sequence or real numbers {cn} converging to c and such that
d(1− cn, β) = d(1, B(cn, β)). The continuity now follows from Theorem
7.5 and the continuity of the β-expansion. �

Proposition 7.12 For fixed β > 1 we have dimH Fβ(c) = 0 if and only
if c ≥ 1− 1

β .

Proof: There is an N such that (10n)∞ ∈ Sβ for n > N . Let rk be the
largest root of the equation 1 = 1

x + 1
xn+k . Then

dimH Fβ

(
1− 1

β
− 1
βn+k

)
=

log rk
log β

↘ 0

as rk decreases monotonically to 1 when k tends to infinity. �

Now let us turn to the points which correspond to those sequences
with infinite minimal prefix. It is clear that these points fulfils m(x, β) =
M(x, β), that is, it is those points falling between the intervals Iβ(c). By
Lemma 4.4 we can define the set of infinite expansions of one IEO(c, β)
in the interval [B(c, β), β] by

IEO(c, β) = {x = d(1, β0) ∈ Sβ : B(c, β) ≤ β0 ≤ β and x is infinite} .

Theorem 7.13 The function c 7→ dimH Fβ(c) has derivative zero Le-
besgue a.e.

Proof: Let λβ be the Lebesgue measure on Sβ. If x ∈ IEO(c, β) then
x = d(1, β0) for some β0 ≤ β. Hence

IEO(c, β) ⊂
⋃

β0<β

Sβ0 ∪ {d(1, β)}.

But as λ(Sβ0) = 0 for β0 < β and since we may consider the union above
as countable we have λ(IEO(c, β)) = 0 �
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Finally we show that when considering the dimension of the set Fβ(c)
we can restrict ourselves to consider the set IEO(c, β) of expansions of
1. Again we see the importance of the expansion of 1 when studying the
β-shift.

Theorem 7.14 For c ∈ [0, 1] we have dimH IEO(c, β) = dimH Fβ(c).

Proof: It is clear that IEO(c, β) ⊂ Fβ(c) and hence dimH IEO(c, β) ≤
dimH Fβ(c). For the reversed inequality, put s = d(1, B(c, β)) or let u
be the minimal prefix of s∗ if s is infinite otherwise let u be the minimal
prefix of (s̃)∗. We may assume that u is finite. From (4.3) there is a
sequence {bk(u, β)} of minimal sequences decreasing to u∞. Then also
vk = bk

(
bk(u, β), β

)
decreases to u∞. Put

ck = 1−
|vk|∑
i=1

(ṽk)∗)i

βi

and define the set

Nk =
{

(b̃k(u, β))∗w : w ∈ [(ṽk)∗] ∩ Fβ(ck)
}
,

where [·] denotes the cylinder-set. Then we have Nk ⊂ IEO(c, β) and
dimH Nk = dimH Fβ(ck). By choosing k sufficiently large we have
dimH Nk arbitrarily close to dimH Fβ(c). �

By combining Theorem 7.13 and Theorem 7.14 we have that the set
IEO(0, β) is a set with Lebesgue measure zero and Hausdorff dimension
one.

8 Numerics

By characterising the dimension of F (c, β), when β is an integer, via the
spectral radius of a primitive transition matrix the problem of numer-
ically calculate an approximative value of φq reduces to calculate the
eigenvalues of the transition matrix.

The graph of φ2, (see figure 1) was calculate in Maple 9.5 by con-
sidering minimal sequence of length at-most 8, which gives transition
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Figure 1: The graph of
c 7→ dimH F (c, 2).
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Figure 2: The graph of
c 7→ dimH F (c, 3).

matrices of size 128×128. A finer subdivision of the interval [0,1] would
require harder calculation as the runtime complexity of the computation
is exponential in the length of the minimal sequences.

Characterising the dimension of F (c, β) via the expansion of 1 in a
β-shift gives a neat way of calculating an approximative picture of the
graph of φβ : c 7→ dimH F (c, β). If we let n be the number of points we
wish to evaluate the graph in then the procedure becomes

For j := n downto 0 do

b := 1 + (β − 1)
j

n

plot

(
1−

∞∑
k=1

d(1, b)k

βk
,
log b
log β

)
endfor

In Figure 2 for the graph of c 7→ dimH F (c, β) for β = 3 and Figure 3
for the graph of c 7→ dimH F (c, β) for β = 2.7 calculated in n = 1000
points. This method is far less time consuming than the method de-
scribed above, where eigenvalues of large transition matrices had to be
calculated.

Note that Corollary 5.13 gives that the graph of c 7→ dimH F (c, 2) is
contained in the graph of c 7→ dimH F (c, 3).
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Figure 3: The graph of
c 7→ dimH F (c, 2.7).
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Figure 4: The graph of
β 7→ dimH F (0.25, β).
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9 Introduction

In this part we are going to study a special case of diophantine approx-
imation, two-sided approximation by real numbers of the form m

qn for
the integer q ≥ 2 and an integer m. Similar to the approximation by
rationals in (1.1) we set the sequences {xn} and {ln} to be

xn,m =
m

qn
and ln =

c

qn
,

for 0 < c < 1. We will turn our interest to the same type of questions as
in the classical approximation case and look at the set of badly approx-
imable numbers under these special form of {xn} and {ln}. We define
F 2(c, q) to be the set

F 2(c, q) =
{
x ∈ S :

∥∥∥∥x− m

qn

∥∥∥∥ < c

qn
finitely often

}
, (9.1)

where the norm ‖ · ‖ denotes the shortest distance to an integer. As we
are going to study dimensional properties of F 2(c, q) we can restrict our-
selves to the case when the condition in (9.1) is infinitely often fulfilled
but is never fulfilled. So we introduce F (c, q) by

F (c, q) = {x ∈ S : ‖qnx‖ ≥ c for all n ≥ 0} (9.2)

Then F 2(c, q) is the countable union of preimages of F (c, β) under mul-
tiplication by q. Hence we have dimH F 2(c, q) = dimH F (c, q). From
the expansion (2.2) of a real number x ∈ [0, 1] into an integer base q we
see that we can redefine the set F (c, q) into a set of sequences from a q
letter alphabet. We have

F (c, q) =
{
x ∈ S∞(q) : c′ ≥ σn(x) ≥ c for all n ≥ 0.

}
(9.3)

We define the dimension function φq : [0, 1] → [0, 1] by

φq(c) = dimH F (c, q).

The main results concerning the function φq are,
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Main Result 9.1 For q ≥ 2 the function φq is continuous, is partly self
similar, has derivative zero Lebesgue a.e., the complementary zero-set, to
where the derivative of φq is zero, has full Hausdorff dimension and we
give the complete characterisation of the intervals where the derivative
of φq is zero.

In [1, 2], (see also [4]) Allouche and Cosnard consider iterations of
unimodal functions. (A continuous function f is said to be unimodal
if for a ∈ (0, 1), f(1) = 0 and f(a) = 1, it is strictly increasing on
[0, a) and strictly decreasing on (a, 1]). They give the result that the
existence of unimodal functions is connected to elements in the set of
binary sequences Γ(2), where

Γ(q) = {x ∈ S∞(q) : x′ ≤ σn(x) ≤ x for all n ≥ 0}. (9.4)

Allouche and Cosnard presents some properties of the set Γ(2). They
show that it is a self similar set and therefore a fractal set. In Corollary
16.24 we show that the dimensional structure of Γ(2) is the same as the
dimensional structure of F (c, 2). Furthermore in [1, 2], Allouche and
Cosnard consider also the more general set Γa(2), where

Γa(q) = {x ∈ S∞(q) : a′ ≤ σn(x) ≤ a for all n ≥ 0}. (9.5)

One of the main results achieved by Allouche and Cosnard on Γa(2) is
to present the threshold sequence t2 such that Γa(2) is countable if and
only if a < t2. In [14], Moreira improves this result and shows that
dimH Γa(2) = 0 if and only if a ≤ t2.

Moreira also turn his interest to how the dimension of sets like Γa(2)
depends on the parameter a. In [12], Labarca and Moreira show that
for (a, b) ∈ S∞(2)× S∞(2) the map

(a, b) 7→ dimH{x ∈ S∞(2) : a ≥ σn(x) ≥ b for all n ≥ 0}

is continuous in both a and b. In Section 14 we present in more detail
some technical results by Allouche and Cosnard that we will make use
of.

It is clear that the threshold sequence t2 given by Allouche, Cosnard
and Moreira also applies to our set F (c, 2), that is, F (c, 2) is countable
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if and only if the binary sequence c fulfils c > t′2 and dimH F (c, 2) = 0 if
and only if c ≥ t′2. We will generalise this result and give the threshold
sequence tq for set F (c, q) for any integer q ≥ 2, (see Theorem 16.9).

We will give a new proof that the map φ2 is continuous, which is a
special case of the result that φq is continuous. We prove that φq has
derivative zero Lebesgue a.e. and show how to completely describe the
intervals where the dimension remains unchanged.

The main idea is that we start by considering the binary case, q = 2,
which we then show has a partly direct translation to the case q = 3.
These two case then serve as the base in a two step induction when
extending the result to hold for the case with q + 2.

10 Fundamental Properties

From the definition of F (c, q) and by symmetry it is clear that we have
the equaivalence

x ∈ F (c, q) if and only if x′ ∈ F (c, q).

Lemma 10.1 Let c ∈ S∗(q). Then F (c, q) = F (c∞, q).

Proof: The lemma is a direct consequence from Lemma 4.1. �

Lemma 10.2 Let c ∈ S(q) be of the form c = ũ (u∗)ku′v for some
k ≥ 0 and a finite sequence u. If x ∈ F (c, q) contains the subsequence
ũ, (or symmetrically u′), then x must be of the form

w ũ (u∗)k1 u′ uk2 ũ (u∗)k3 u′ uk4 ũ . . . , (10.1)

with 0 ≤ ki ≤ k and where the sequence w does not contain the subse-
quence ũ.

Proof: Let n be the smallest integer such that σn(x) = ũ . . .. Let
σn(x) = ũ a1 a2 . . ., with |ai| = |u|. Let m be the smallest integer such
that am 6= u∗. From the inequality σn(x) = ũ a1 a2 . . . ≥ ũ (u∗)ku′v
we have that 1 ≤ m ≤ k + 1.

47



Johan Nilsson

σn(x) = ũ a1 a2 a3 a4 a5

c = ũ u∗ u∗ u∗ u′ v

This implies that am ≥ u′. By shifting the sequence x additionally m|u|
times we obtain u′ ≥ am.

c′ = u′ u u u ũ v′

σn+m|u|(x) = am am+1 am+2 am+3 am+4 am+5

Hence u′ = am. The result now follows by symmetry. �

For the special case when k = 0 in Lemma 10.2 we have the following
corollary, which also was given by Allouche in [1].

Corollary 10.3 Let c ∈ S∗(q) be of the form c = u u∗. If x ∈ F (c, q)
contains the subsequence u, (or symmetrically u∗), then x must be of
the form

w(u u∗)∞

for some sequence w not containing the subsequence u.

11 Shift-Bounded Sequences

Definition 11.1 A finite sequence s fulfilling s′ > σn(s) > s for 0 <
n < |s| is said to be a finite shift-bounded sequence. Similarly, an infinite
sequence s fulfilling s′ > σn(s) > s for all n > 0 is said to be an infinite
shift-bounded sequence. We also say that a sequence s 6= 0 and |s| = 1
is shift-bounded.

Our definition of shift-bounded sequences coincides with and ex-
tends the definition of admissible sequences considered by Komornik
and Loreti in [11] and by Allouche and Cosnard in [3]. From the Defini-
tion 11.1 we have directly the following lemma, which states some very
useful properties of suffixes and prefixes of a shift-bounded sequence.
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Proposition 11.2 Let s be a finite shift-bounded sequence and let α
and γ be a prefix and a suffix respectively of s such that |α| = |γ| < |c|.
Then α∗ ≥ γ > α and α∗ > γ̃ ≥ α.

Lemma 11.3 Let s be a shift-bounded sequence. If a a∗ is a prefix of s
then s = a a∗.

Proof: Assume s = a a∗w, where w is non-empty. Let N be the
maximal integer such that s = (a a∗)Nu for some sequence u. This
number N exists, since otherwise s would be periodic and hence not
shift-bounded. If u does not have a as a prefix we have a∗a u′ >
σ2|a|N−|a|(s) = a∗u. But also σ2|a|N (s) = u > a. Hence a u′ > u > a,
a contradiction as a is not a prefix of u. For the second case, if u
has a as prefix we can write s = (a a∗)Nav for some sequence v not
having a∗ as prefix. This gives a∗a a∗v′ > σ2|a|N−|a|(s) = a∗a v and
σ2|a|N (s) = a v > a a∗, that is, a∗v′ > v > a∗, a contradiction. �

Corollary 11.4 Let s be a shift-bounded sequence and let s = abe with
|a| = |b| and |e| > 0. Then b < a∗.

Lemma 11.5 Let s ∈ S(q) be a shift-bounded sequence. Then s is a
sequence from the alphabet {s1, s1 + 1, s1 + 2, . . . , q − s1 − 1}.

Proof: Assume sn < s1. Then σn−1(s) = snsn+1sn+2 . . . < s1s2s3 . . . =
s, contradicting s being shift-bounded. Similarly, if q−sn−1 < sn then
s′ = (q − s1 − 1)(q − s2 − 1)(q − s3 − 1) . . . < snsn+1sn+2 . . . = σn−1(s),
again a contradiction. �

Definition 11.6 For a finite shift-bounded sequence s = uvu∗ < 1 in
S∗(q), where u is the longest possible, we define the prefix-suffix reduc-
tion function p : S∗(q) → S∗(q) by p(s, q) = ûv.

The shift-boundedness of s in the definition gives that p(s, q) is well
defined, that 1

2 |s| ≤ |p(s, q)| ≤ |s| and s < p(s, q).

Lemma 11.7 Let s ∈ S(q) be a finite shift-bounded sequence such that
|s| > 1. Then p(s, q) is shift-bounded.
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Proof: Let s = uvu∗ where p(s, q) = ûv. The inequality σn(p(s, q)) >
p(s, q) for 0 < n < |p(s, q)| follows from the definition of p and that s is
shift-bounded. For the upper bounding inequality for shift-boundedness
we consider first the case when 0 < n < |u|. Let α = p(s, q)[1, n] and
β = p(s, q)[n+ 1, 2n].

p(s, q)′ = α∗ β∗
z }| {u∗

v

σn(p(s, q) = β| {z }
σn(u)

v̂

Then as s is shift-bounded we have by Corollary 11.4 that α∗ > β and
therefore p(s, q)′ > σn(p(s, q)).

For |u| ≤ n < |p(s, q)| assume first that u is non-void. Then let
α = s[1, |uv|−n], β = s[n+1, |uv|] and γ = s[|uv|−n+1, |uv|−n+|u|].

s′ =

z }| {α∗

u∗ v′
z }| {γ∗

σn(s) = | {z }
β

v u∗

By the definition of u we have α∗γ∗ > βu∗. But as u∗ ≥ γ∗ we
must have α∗ > β and hence p(s, q)′ > σn(p(s, q)). If u is void let
α = s[1, |s| − n] and γ = s[n + 1, |s|]. Then since s is shift-bounded
we have α∗ ≥ γ, but since u is empty we must have α∗ > γ. Hence
α∗ ≥ γ̂, which implies p(s, q)′ > σn(p(s, q)). �

Lemma 11.8 Let s ∈ S∗(q) be a finite shift-bounded sequence starting
with the symbol s1. Then there is an n such that pn(s, q) = s1(q−s1−1).

Proof: Since 1
2 |s| ≤ |p(s, q)| and pn(s, q) is shift-bounded and decreasing

in length under n there is a first m such that |pm(s, q)| = 2. We have
pm(s, q) = s1 r for some r ∈ {s1 + 1, s1 + 2, . . . , q − s1 − 1}. This gives
pm+q−s1−r−1(s, q) = s1(q − s1 − 1). �

Definition 11.9 For a finite sequence s of length n not ending with a
0, we define the map f : S∗(q) → S∗(q) by f(s, q) = s̃ s′. We define
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the function d : S∗(q) → S∗(q) as the function taking s to its limit point
under self-composition of f ,

d(s, q) = lim
k→∞

fk(s, q).

The function f could equally have been defined on the rational num-
bers. By a straight forward calculation we have

Theorem 11.10 Let a
qn ∈ Q+ \ {0}. Then the limit

lim
k→∞

fk(
a

qn
) =

a

qn

∞∏
i=0

(
1− 1

q2in

)
is a well defined real number and moreover it is a transcendental number.

The second part of the theorem is a direct consequence of the fol-
lowing theorem by Mahler [13],

Theorem 11.11 (Mahler) Let 0 < |a| < 1 be an algebraic number.
Then the product

∏∞
i=0(1− a2i

) is transcendental.

In [1, 2, 3] Allouche and Cosnard define the function ϕ on periodic
sequences by ϕ((x0)∞) = (x1x∗0)∞. Our function f is ϕ restricted
to finite sequences. As we are going to consider properties of finite
sequences we prefer f rather than Allouche and Cosnard’s ϕ. The se-
quence d(s, q) coincides with Allouche and Cosnard’s notion of t-mirror
sequences, where the t is the length of s.

Lemma 11.12 (Allouche, Cosnard) Let Γ be the set defined in (9.4)
and let x = (a0)∞, where (a0) is the shortest period. Then x ∈ Γ if and
only if ϕ(x) ∈ Γ and moreover x ∈ Γ if and only if limn→∞ ϕn(x) ∈ Γ.

In the same spirit as Lemma 11.12 we have

Lemma 11.13 Let s ∈ S∗(q) be a finite sequence. Then s is shift-
bounded if and only if f(s, q) is shift-bounded.

51



Johan Nilsson

Proof: Assume that s is shift-bounded. For 0 < n < |s| let α∗ =
f(s, q)[|s|+ 1, |s|+ n], v = f(s, q)[1, |s| − n], ũ = f(s, q)[n+ 1, |s|] and
γ̃ = f(s, q)[|s| − n+ 1, |s|].

σn(f(s, q)) = ũ α∗

f(s, q) = | {z }
s̃

s′v γ̃

The shift-boundedness of s gives ũ ≥ v and α∗ > γ̃. This implies that
the inequality σn(f(s, q)) > f(s, q) holds. For the case n = |s| we have
that σn(f(s, q)) = s′ > s̃s′ = f(s, q).

For |s| < n < 2|s| let α = f(s, q)[1, 2|s| − n], (γ̃)∗ = f(s, q)[n +
1, 2|s|].

σn(f(s, q)) = (γ̃)∗

f(s, q) = | {z }
s̃

s′α

Hence (γ̃)∗ > α as s is shift-bounded and therefore σn(f(s, q)) > f(s, q).
For 0 < n < |s| let α∗ =

(
f(s, q)[1, |s| − n]

)′ and γ̃ = f(s, q)[n +
1, |s|].

f(s, q)′ =

z }| {(s̃)∗

sα∗

σn(f(s, q)) = γ̃ s′

From Proposition 11.2 the shift-boundedness of s gives α∗ > γ̃ and
therefore f(s, q) > σn(f(s, q)). For n = |s| we have f(s, q)′ = s′s >
s′ = σn(f(s, q)).

For |s| < n < 2|s| let α∗ =
(
f(s, q)[1, 2|s| − n]

)′, (γ̃)∗ = f(s, q)[n+
1, 2|s|].

f(s, q)′ =

z }| {(s̃)∗

s′α∗

σn(f(s, q)) = (γ̃)∗
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Again, as s is shift-bounded we have α∗ ≥ (γ̃)∗, which implies f(s, q) >
σn(f(s, q)).

Now conversely, assume that f(s, q) is shift-bounded. Since f(s, q) =
s̃s′ = s̃(s̃) we have by Lemma 11.7 that p(f(s, q), q) = s and that s is
shift-bounded, which ends the proof. �

Corollary 11.14 If s ∈ S∗(q) is a finite shift-bounded sequence then
d(s, q) is an infinite shift-bounded sequence.

Proof: From Lemma 11.13 we have that

d(s, q)′ ≥ σn
(
d(s, q)

)
≥ d(s, q) (11.1)

for all n > 0. The sequence d(s, q) corresponds to the q-nary expansion
of a real number, x and Mahler’s Theorem 11.11 gives that this number
x is transcendental. If we for some n would have equality in one of
the inequalities then d(s, q) must be periodic and therefore x must be
rational, a contradiction. �

Lemma 11.15 Let s ∈ S∗(q) be a finite shift-bounded sequence such
that there exists no sequence u ∈ S∗(q) such that f(u, q) = s. Then the
sequences {uk = fk(s, q) : k ≥ 0} are the only shift-bounded sequences
in the interval

(
d(s, q), s∞

]
.

Proof: Let v ∈ S(q) be a finite or infinite shift-bounded sequence in the
interval

(
d(s, q), s

]
. Then there is a k ≥ 0 such that

uk+1 < v ≤ uk. (11.2)

Hence uk[1, |uk| − 1] = v[1, |uk| − 1]. If uk = v[1, |uk|] then by (11.2)
we must have uk = v. For the case uk+1[1, |uk|] = v[1, |uk|], we have
by Lemma 11.3 and (11.2) that uk+1 can not be a prefix of v. Hence
there is first a position |uk| < i ≤ |uk+1| where uk+1 and v differ. But
then σ|uk|(v) > v′, contradicting v being shift-bounded.

If v is a shift-bounded sequence in the interval (s , s∞) then we must
have v = skb where b > s. But then v > s∞, a contradiction. �

Lemma 11.16 Let c ∈ S∗(q) be a finite sequence. Then

dimH F (fn(c, q), q) = dimH F (c, q)

for all n ≥ 0.
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Proof: Let x ∈ F (f(c), q) \ F (c, q). Then x must at least once contain
the pattern c̃. But as f(c) = c̃(c̃)∗ Corollary 10.3 gives that x must end
with (c̃(c̃)∗)∞. Hence F (f(c), q) contains only countably more elements
than F (c, q). To prove that we may extend to f2 replace c by c1 = f(c)
and repeat the argumentation. �

We end the section with a remark on the infinite shift-bounded se-
quences. Let ISB(q) be the set of all infinite shift-bounded sequences
on the alphabet {0, 1, . . . , q − 1}, that is,

ISB(q) = {x ∈ S∞(q) : x′ > σn(x) > x for all n > 0}. (11.3)

Lemma 11.17 The set ISB(q) has Lebesgue measure 0.

Proof: We have ISB(q) ⊂ IM (q), so the result follows directly from
Lemma 4.10. �

12 Minimal Sequences

Definition 12.1 For a finite sequence s ∈ S∗(q) not ending with a 0,
we define the function e : S∗(q) → S∞(q) by e(s, q) = s̃ (s∗)∞.

The motivation for the definition of the function e is that e gives
sequences which are the extremal case, k = ∞, in Lemma 10.2.

Definition 12.2 Let eq,i = e(f i([ q
2 ], q), q) for i ≥ 0 and we let e0

q,0 =
0∞ and er

q,0 = e(r, q) for r ∈ {1, 2, . . . , [ q
2 ]}.

A sequence s ∈ S(q), not containing only zeros, finite or infinite, is
an eq,i-sequence if eq,i−1 ≤ s < eq,i or an eq,0-sequence if s < eq,0. If
er−1

q,0 ≤ s < er
q,0 then s is said to be an erq,0-sequence.

Note that eq,i grows monotonically to d([ q
2 ], q) as i tends to infinity

and moreover, any er
q,0-sequence is an eq,0-sequence and eq,0 = ek

q,0 for
k = [ q

2 ]. Note also that the sequence eq,i are eq,i+1-sequences.
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Example 12.3 For q = 2, 3, 4, 5 we have for small values of i

e0
2,0 = 0∞ e0

3,0 = 0∞

e1
2,0 = 0∞ e1

3,0 = 0(1)∞

e2,0 = 0∞ e3,0 = 0(1)∞

e2,1 = 00(10)∞ e3,1 = 01(20)∞

e2,2 = 0010(1100)∞ e3,2 = 0120(2101)∞

e2,3 = 00101100(11010010)∞ e3,3 = 01202101(21020120)∞

e0
4,0 = 0∞ e0

5,0 = 0∞

e1
4,0 = 0(2)∞ e1

5,0 = 0(3)∞

e2
4,0 = 1∞ e2

5,0 = 1(2)∞

e4,0 = 1∞ e5,0 = 1(2)∞

e4,1 = 11(21)∞ e5,1 = 12(31)∞

e4,2 = 1121(2211)∞ e5,2 = 1231(3212)∞

e4,3 = 11212211(22121121)∞ e5,3 = 12313212(32131231)∞

Note that e4,i is just a re-alphabetisation of e2,i and that e5,i is a re-
alphabetisation of e3,i. �

Definition 12.4 For a sequence s ∈ S(q) with |s| > n we define the
map g by gn,k(s) = s[1, n− 1]k, where k ∈ {0, 1, . . . , q − 1}.

Definition 12.5 Let s be an eq,i-sequence. We define the integer ms

by
ms = min

1≤k<q
inf
{
n ≥ 2i : e(gn,k(s), q) ≤ s ≤ gn,k(s)∞

}
and we denote by ks the unique k for which the minimum is obtained.

If ms is undefined we set ms = ∞. We say that gms,ks(s) is an
eq,i-minimal prefix of s. A sequence s is an eq,i-minimal sequence if
gms,ks(s) = s[1,ms] = s or if ms = ∞.

Example 12.6 The binary sequence 001 is an e2,1-minimal sequence
and the sequence 001011 is an e2,2-minimal sequence. The non-zero se-
quences eq,i are infinite eq,i+1-minimal sequences. The ternary sequence
0111 has the e3,1-minimal prefix 012. �

Lemma 12.7 Let s be an eq,i-sequence with a finite eq,i-minimal prefix.
Then either sms = ks or sms = ks − 1.
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Proof: Assume that sms < ks − 1. Then e(gms,ks(s), q) > s, contra-
dicting the definition of ks. Similarly, if sms > ks then s > gms,ks(s)∞,
again a contradiction. �

Lemma 12.8 An eq,i-minimal prefix is an eq,i-sequence.

Proof: Let s be an eq,i-sequence. The lemma is clear if the eq,i-minimal
prefix of s is an infinite sequence. Hence we assume that s has the finite
eq,i-minimal prefix c, that is, c = gms,ks(s).

Assume for contradiction that c > eq,i. We must have that c̃ is
a prefix of eq,i. Let w = f i([ q

2 ], q), α∗ = e(c, q)[|c| + 1, k · 2i] and
γ∗ = eq,i[|c|+1, k·2i], where k is the smallest integer such that k·2i ≥ |c|.

eq,i =

z }| {w̃ z }| {w∗ z }| {w∗

γ∗

e(c, q) = | {z }
c̃

| {z }
(w̃)∗

α∗

If k > 1 and k · 2i > |c| then as w is shift-bounded we have α∗ > γ∗.
Therefore s ≥ e(c, q) > eq,i, contradicting s being an eq,i-sequence. If
k = 1 then we would have e(c, q) = eq,i, again contradicting that s is an
eq,i-sequence. For k > 1 and k · 2i = |c| then we reach a contradiction
as w∗ < (w̃)∗, which conclude the case.

For the case if c is to small, assume for contradiction that c <
eq,i−1. We must then have that c is a prefix of eq,i−1. This because
Lemma 12.7 gives that ks must be sms or sms + 1. If sms − 1 = ks then
s < eq,i−1, so s would not be an eq,i-sequence. Let w = f i−1([ q

2 ], q).
Note that |w| = 2i−1. Furthermore let v∗ = eq,i−1[|c| + 1, k · 2i−1],
u = gms,ks(s)∞[|c| + 1, k · 2i−1], α∗ = eq,i[k · 2i−1, |c| + 2i−1] and γ̃ =
gms,ks(s)∞[k · 2i−1, |c|+ 2i−1] where k is the smallest integer such that
k · 2i−1 ≥ |c|.

gms,ks(s) =

z }| {w̃

u γ̃

eq,i−1 = | {z }
w̃

| {z }
w∗

| {z }
w∗

v∗ α∗
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If k · 2i−1 > |c| then as w is shift-bounded we have v∗α∗ > uγ̃ = w̃ and
therefore

s ≤ gms,ks(s)∞ < eq,i−1,

a contradiction. If k · 2i−1 = |c| the result follows as w̃ ≤ w∗, which
concludes the proof. �

Example 12.9 If the condition of having n ≥ 2i in the definition of eq,i-
minimal prefixes is dropped then for any eq,i-sequence s with i ≥ 1 we
would have ms = 1. For illustration, the e2,2-minimal sequence 001011
is bounded by e(1, 2) = 0∞ ≤ 001011 ≤ 1∞. �

Lemma 12.10 The eq,0-minimal prefix of an erq,0-sequence is again an
erq,0-sequence.

Proof: Let s be an erq,0-sequence. The lemma is clear if the eq,0-minimal
prefix of s is an infinite sequence. Therefore we only have to consider the
case when s has the finite eq,0-minimal prefix c, that is, c = gms,ks(s).

Assume for contradiction that c > er
q,0. First consider the case when

|c| = 1. Then we must have c = r and therefore

s ≥ e(c, q) = (r − 1)(q − r)∞ = er
q,0.

a contradiction to s being an erq,0-sequence. Similarly, if |c| ≥ 2 we must
have that c̃ is a prefix of er

q,0, that is, c = (r− 1)(q − r− 1)N (q − r) for
some N . But then

s ≥ e(c, q)
= (r − 1)(q − r − 1)N (q − r − 1)

(
(q − r)rN+1

)∞
> (r − 1)(q − r − 1)∞

= er
q,0,

again a contradiction to s being an erq,0-sequence.
Now, assume that c < er−1

q,0 . We must then have that c is a prefix
of the sequence er−1

q,0 . This because Lemma 12.7 gives that ks must be
sms or sms + 1. If sms − 1 = ks then s < er−1

q,0 , so s would not be an
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erq,0-sequence. This gives that c = (r− 2)(q− r− 2)N for some N . Then
we get

s ≤ gms,ks(c)∞

=
(
(r − 2)(q − r − 2)N

)∞
< (r − 2)(q − r − 2)∞

= er−1
q,0 ,

again a contradiction to that s is an erq,0-sequence. �

Lemma 12.11 Let s be an eq,i-sequence. Then s′ > σn(s) > s for all
0 < n < 2i.

Proof: The result is clear for any eq,0- and eq,1-sequence. Hence we only
have to consider the case with i > 1. Let uk = fk([ q

2 ], q) and put

si := ũi u
′
i−2 = ũi−2 u∗i−2 u′i−2 ũi−2 u′i−2.

Note that |si| = 5 · 2i−2. We have that si is a prefix of all eq,i-sequences
and moreover si is a prefix of f i+1([ q

2 ], q). To prove the lemma it is
enough to show that s′i > σn(si) > si holds for 0 < n < 2i as si is a
prefix of any eq,i-sequence. Since f i+1([ q

2 ], q) is a shift-bounded sequence
we have that

s′i[1, |si| − n] ≥ σn(si) ≥ si[1, |si| − n] (12.1)

holds for 0 < n < |si|. Hence we have to show that these (12.1) shift-
inequalities are strict for 1 < n < 2i. For the upper bounding inequality
let α = si[|ui|+ 1, |ui|+ n] and γ̃ = si[|ui| − n+ 1, |ui|].

s′i =

z }| {u′
i

α∗ u′
r

σn(si) = | {z }
σn(ũi)

γ̃ u′
r

As ui is shift-bounded we have α∗ > γ̃ and therefore s′i[1, si − n] >
σn(si).
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To prove the lower inequality of (12.1) we consider first the case when
0 < n < |ur|. Let α∗ = si[|ur|+1, |ur|+n] and γ̃ = si[|ur|−n+1, |ur|].

σn(si) =

z }| {u∗
r

α∗ u′
r ũr u′

r

si = | {z }
ũr

γ̃ u∗
r u′

r ũr u′
r

As ur is shift-bounded we have α∗ > γ̃ and therefore σn(si) > si. The
case n = |ur| is clear as ũr < u∗r .

For |ur| < n < 2|ur| let α∗ = si[2|ur|+1, |ur|+n] and γ̃ = si[|ur|−
n+ 1, |ur|].

σn(si) =

z }| {u′
r

α∗ ũr u′
r

si = | {z }
ũr

γ̃ u∗
r u′

r ũr u′
r

Again by the shift-boundedness of ur we have α∗ > γ̃ and therefore
σn(si) > si. The case n = 2|ur| follows as ũr < u′r.

For 2|ur| < n < 3|ur| let α = si[1, 3|ur| − n] and (γ̃)∗ = si[n +
1, 3|ur|].

σn(si) =

z }| {σn−3|ur|(u′
r)

(γ̃)∗ ũr u′
r

si = | {z }
ũr

α u∗
r u′

r ũr u′
r

The shift-boundedness of ur gives again α < (γ̃)∗ and therefore σn(si) >
si. The case n = 3|ur| is clear as u∗r < u′r.

For 3|ur| < n < 4|ur| let α = si[4|ur| + 1, |ur| + n] and γ̃ =
si[4|ur| − n+ 1, |ur|].
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σn(si) =

z }| {u′
r

α∗

si = | {z }
ũr

γ̃ u∗
r u′

r ũr u′
r

As ur is shift-bounded we have α < (γ̃)∗ and therefore σn(si) > si.
The case n = 4|ur| is as before clear as ũr < u′r, concluding the proof
of the lower inequality of (12.1). �

Lemma 12.12 An eq,i-minimal prefix is an eq,i-minimal sequence.

Proof: It is clear that the statement holds in the infinite case. Let c
be the finite eq,i-minimal prefix of the sequence s, i.e. c = gms,ks(s).
We have to show that the eq,i-minimal prefix of c is c itself, that is,
c = gmc,kc(c) .

If mc = ms then Lemma 12.7 gives that ks = kc or that ks = kc−1.
From the definition of eq,i-minimal prefixes we have

e(gms,ks(s), q) ≤ s ≤ c ≤ gms,ks(s)
∞.

Hence by definition we must have ks = kc.
If mc < ms and cmc = kc − 1 then by definition of an eq,i-minimal

prefix we have

e(gmc,kc(c), q) < c[1,mc] ≤ s < gmc,kc(c)∞,

contradicting c being the eq,i-minimal prefix of s.
For the case cmc = kc =: a and mc < ms we consider two cases.

First, if sms = ks =: b then let γs = s[mc + 1,ms], γc = c[mc + 1,ms]
and α = gmc,kc(c)∞[mc + 1,ms].

s = γs

mc ms

b

c = γc a

gmc,kc(c)∞ = | {z }
α
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It is clear that γs < γc. As c is the eq,i-minimal prefix of s we have
α ≤ γs and as gmc,kc(c) is the eq,i-minimal prefix of c we have α ≥ γc.
Hence α ≤ γs < γc ≤ α, a contradiction.

Secondly, if smc = ks then by Lemma 12.11 ms coincides with the
integer ns defined by ns = inf{n ≥ 1 : s[1, n]∞ ≥ s} in Definition
4.2. From Lemma 12.11 we have ns ≥ 2i. Lemma 4.4 now implies that
mc = ms, concluding the proof. �

Lemma 12.13 An eq,i-minimal sequence is shift-bounded.

Proof: Let s be an eq,i-minimal sequence. From Lemma 4.4 and Lemma
12.11 we have that ns ≥ 2i. But as s is an eq,i-minimal sequence we
have also that s > gn,sn(s)∞ for 2i ≤ n < |s|. Hence s > s[1, n]∞ for
0 < n < |s|, which by Lemma 4.4 implies σn(s) > s for 0 < n < |s|.

For the upper bounding inequality in the definition of shift-bounded-
ness we have by Lemma 12.11 that s′ > σn(s) for 0 < n < 2i. Moreover,
by the eq,i-minimality of s we have that e(gn,sn+1(s), q) > s for 2i ≤ n <
|s|. For 2i ≤ n < |s| let a = s[1, n]. Then e(gn,sn+1(s), q) = a((â)∗)∞

and s = ab for some sequence b such that (â)∗ > b. This implies
s′ ≥ a∗ > (â)∗ > b = σn(s). �

Example 12.14 A shift-bounded eq,i-sequence does not have to be an
eq,i-minimal sequence. The binary e2,1-sequence 000111 is shift-bounded
but not an e2,1-minimal sequence, it has the e2,1-minimal prefix 001. �

Lemma 12.15 Let s be a finite eq,i-minimal sequence and let s = uvu∗

where p(s, q) = ûv. Put ak = s̃(s∗)ku∗ for k > 0. Then the ak’s are
eq,i-minimal and ak ↗ e(s, q) when k tends to infinity.

Proof: We have to show that the inequalities

e(gn,c(ak), q) > ak, (12.2)

where c = (ak)n + 1, and

ak > gn,c(ak)∞, (12.3)

where c = (ak)n, holds for 2i ≤ n < |ak|. The eq,i-minimality of s gives
directly that (12.2) and (12.3) holds for 2i ≤ n < |s|. For n = r|s| with
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1 < r < k we have that (12.2) holds as (s̃)∗ > s∗ ≥ u∗ and that (12.3)
holds because s∗ > s̃. For the remaning cases let us first turn to the
inequality (12.2).

For j|s| < n < (j + 1)|s| with 0 < j < k let c = (ak)n + 1, α∗ =
e(gn,c(ak, q)[n+ 1, j|s|] and γ∗ = ak[n+ 1, j|s|].

e(gn,c(a1), q) =

z }| {s∗

α∗

a1 = | {z }
s∗

s̃ γ∗ u∗

As s is shift-bounded we have α∗ > γ∗ and therefore (12.2) holds.
For k|s| < n < |ak| let c = (ak)n + 1, α∗ = e(gn,c(ak, q)[n+ 1, |ak|]

and γ∗ = ak[n+ 1, |ak|].

e(gn,c(a1), q) = α∗

a1 = | {z }
u∗

s̃ s∗ γ∗

The shift-boundedness of s and the definition of u gives α∗ > γ∗ and
hence (12.2) holds.

Now let us turn to the inequality (12.3). Let 0 < j < k. Then for
j|s| < n < (j + 1)|s| − |u| let c = (ak)n, α = gn,c(ak)∞[n+ 1, (j + 1)|s|]
and γ = ak[n+ 1, (j + 1)|s|].

a1 =

z }| {s∗

s̃ γ∗ u∗

gn,c(a1) = | {z }
s̃

α

By the shift-boundedness of s and the definition of u we must have
γ∗ > α, which implies (12.3).

For (j + 1)|s| − |u| ≤ n < (j + 1)|s| we let c = (ak)n, α =
gn,c(ak)∞[n, (j+1)|s|], γ = ak[n+1, (j+1)|s|] and β = gn,c(ak)∞[(j+
1)|s|+ 1, 2(j + 1)|s| − n].
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a1 =

z }| {s∗ z }| {u∗

s̃ γ∗ α∗

gn,c(a1) = α β

Again, as s is shift-bounded we have γ∗α∗ > αβ since γ∗ ≥ α and
α∗ > β, which gives (12.3).

For k|s| < n < |ak| let c = (ak)n, γ = ak[n + 1, |ak|] and α =
gn,c(ak)∞[n+ 1, |ak|].

a1 =

z }| {u∗

s̃ s∗ γ

gn,c(a1) = α

Then as s is shift-bounded and having u∗ as a suffix we must have
γ > α, which again gives (12.3) and completing the proof. �

Lemma 12.16 Let s be a finite eq,i-minimal sequence. Define bk =
skp(s, q) for k > 0. Then the bk’s are eq,i-minimal and bk ↘ s∞ when
k tends to infinity.

Proof: We have to show that the inequalities

e(gn,c(bk), q) > bk, (12.4)

where c = (bk)n + 1, and

bk > gn,c(bk)∞, (12.5)

where c = (bk)n, holds for 2i ≤ n < |bk|. The eq,i-minimality of s gives
that (12.4) and (12.5) holds for 2i ≤ n < |s|. Moreover the definition of
the function p implies (12.5) holds for all n. Hence we only have to deal
with (12.4).

For n = r|s| with 1 < r < k we have that (12.4) holds as (ŝ)∗ > s ≥
p(s, q). Note that we only have to consider the case when ŝ is defined.
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For j|s| < n < j|s| + |p(s, q)| where 0 < j < k let c = (bk)n + 1,
α∗ = e(gn,c(bk), q)[n+ 1, (j + 1)|s|] and γ = bk[n+ 1, (j + 1)|s|].

e(gn,c(b2), q) =

z }| {s∗

α∗

b2 = | {z }
s

s γ p(s, q)

From the shift-boundedness of s and the definition of p(s, q) we have
that α∗ > γ, which implies (12.4).

For j|s|+ |p(s, q)| ≤ n < (j+1)|s| where 0 < j < k let c = (bk)n +1,
α∗ = e(gn,c(bk), q)[n + 1, (j + 1)|s|], γ = bk[n + 1, (j + 1)|s|] and β∗ =
e(gn,c(bk), q)[(j + 1)|s|+ 1, (j + 1)|s| − n].

e(gn,c(b2), q) =

z }| {s∗

α∗ β∗

b2 = | {z }
s

| {z }
p(s, q)

s γ α

Again, as s is shift-bounded we have α∗β∗ > γα since α∗ ≥ γ and
β∗ > α, which gives (12.4).

For k|s| < n < |bk| let c = (bk)n + 1, α∗ = e(gn,c(bk), q)[n + 1, |bk|]
and γ = bk[n+ 1, |bk|].

e(gn,c(b2), q) = α∗

b2 = | {z }
p(s, q)

s s γ

Since p(s, q) is shift-bounded we have that α∗ ≥ γ, which again gives
(12.4). �

Lemma 12.17 Let c ∈ S∗(q) be such that [c] ∩ F (c, q) 6= ∅ and let
u ∈ S∗(q) be such that [u] ∩ F (c, q) 6= ∅. Then there exists 1 ≤ k ≤ |u|
such that [u[1, k]c] ∩ F (c, q) 6= ∅

Proof: Assume there exists a smallest k such that u[k+1, |u|] = c[1, |u|−
k+1]. If we for some n < k would have σn(u) = c[1, n−k] then we would
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have a contradiction to the minimality of k. Hence σn(u) > c[1, n − k]
for n < k. For any continuation v of u such that uv ∈ F (c, q) we have

c′ > σn
(
u v[1, |c| − |u|+ k − 1]) ≥ σn(u c[k + 1, |c|]),

as c is lexicographically smallest sequence in F (c, q). If c does not
overlap u then clearly we must have both σn(u) > c and c′ > σn(uc)
for 0 < n < |u|. �

Lemma 12.18 Let c be a finite eq,0- or eq,1-minimal sequence starting
with the symbol c1. Put z = c1 (q − c1 − 1). Then there exists a finite
sequence w such that c w z∞ ∈ F (c, q).

Proof: Let ak = pk(c, q) for 0 ≤ k ≤ N where N is such that aN = z,
which exists by Lemma 11.8. Now let

bk = ak (ak+1)∞ = uvu∗(ûv)∞.

We claim that c′ > σn(bk) > c for 0 ≤ n < |ak|. To prove the claim it
is enough to prove that it holds for 0 ≤ n ≤ |ak| as c′ > σn(a∞r ) > c for
n ≥ 0 and 0 ≤ r ≤ N . The lower inequality, σn(bk) > c, follows direct
from the definition of p. For the upper inequality we start by notice that
when n = 0 the result follows trivially as (bk)1 < (c′)1.

For 0 < n < 1
2 |ak| let α = bk[1, n] and β = bk[n+ 1, 2n].

c′ =

z }| {a′k

α∗ β∗

σn(bk) = | {z }
σn(ak)

β ak+1 ak+1

As c is shift-bounded α∗ > β and therefore c′ > σn(bk).
For n = 1

2 |ak|, if v is void and since |ak| ≥ 2 the eq,i-minimality of
c gives c′ > u∗(ũ)∞ = σn(bk). (Note that this argument can only be
used for i = 0 or i = 1). If both u and v are non-void then the result
follows by the definition of ak+1 via p.
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c′ =

z }| {a′k

u∗

σn(bk) = | {z }
σn(ak)

u∗ ak+1 ak+1

For 1
2 |ak| < n < |ak| let α∗ = c′[1, |ak| − n], β∗ = c′[|ak| − n +

1, 2|ak| − 2n] and γ = bk[n+ 1, |ak|].

c′ =

z }| {a′k

α∗ β∗

σn(bk) = | {z }
σn(ak)

| {z }
ak+1

γ α ak+1

We have α∗ ≥ γ and β∗ > α. If u is void we have directly α∗ > γ.
Therefore c′ > σn(bk), which proves the claim. Put w = an1

1 an2
2 . . .aN

with nk = [ |c||ak| ] + 1. By repeated use of the just proved claim we have
c w z∞ ∈ F (c, q). �

Example 12.19 Lemma 12.18 can not be generalised to hold for some
i ≥ 2 in any base q ≥ 2. Consider the case i ≥ 2, q = 2 and assume that
c is a finite minimal e2,i-minimal sequence. Then c must have a prefix
p of the form 01(10)k11 for some k > 0. If we let u = 01 then we have
that p = ũ(u∗)ku′. Lemma 10.2 gives that we can never find a sequence
w such that cw(01)∞ is a sequence in F (c, 2).

Similarly, for i ≥ 2, q = 3 we can assume that c is a finite mini-
mal e3,i-minimal sequence. Then c must have a prefix p of the form
02(20)k21 for some k > 0. If we let u = 02 then we have that p =
ũ(u∗)ku′. Lemma 10.2 gives that we can never find a sequence w such
that cw(02)∞ is a sequence in F (c, 3).

In Section 16 we give Theorem 16.5 by which we can generalise this
example to any q ≥ 2. �

Proposition 12.20 Let c be a finite shift-bounded eq,i-sequence for i ≥
1. Then there exists an n > 0 such that pn(c, q) = f i([ q

2 ], q).
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Proof: Let us use the notation wk = fk([ q
2 ], q) for k ≥ 0. Then |wk| =

2k. Assume for contradiction that there is an n such that

pn(c, q) < wi < pn+1(c, q). (12.6)

We claim that the above assumption gives the following chain of inequal-
ities

eq,i−1 < pn(c, q) < eq,i < pn+1(c, q). (12.7)

The left-most inequality of (12.7) is clear as c is an eq,i-sequence and
therefore eq,i−1 < c < pn(c, q). The right-most inequality of (12.7) is
given by our assumption eq,i < wi < pn+1(c, q). For the middle inequal-
ity of the claim (12.7), assume that pn(c, q) > eq,i. Then pn(c, q) = w̃is
for some non-empty sequence s with |s| ≤ |wi| and s > w∗

i . (If s would
be empty then pn(c, q) < eq,i−1 since eq,i−1[1, 2i] = eq,i[1, 2i]). Thus

pn(c, q)′ = w∗
i s
′ < σ|wi|(pn(c, q)) = s,

contradicting the shift-boundedness of pn(c, q).
The assumption (12.6) also gives |pn+1(c, q)| < |w|i, since otherwise

wi would be a prefix of pn(c, q), and from the equality eq,i−1[1, 2i] =
eq,i[1, 2i] and (12.7) we also have |w|i < |pn(c, q)|.

Let pn(c, q) = uvu∗ where pn+1(c, q) = ûv. Put α = pn(c, q)[1, 2i−
|uv|], β∗ = pn(c, q)[|uv|+ 1, 2i] and γ∗ = ei−1[|uv|+ 1, 2i].

eq,i−1 =

z }| {w∗
i−1

w̃i−1 γ∗ w̃i−1

pn(s, q) = | {z }
u

| {z }
u∗

α v β∗

By the definition of p we have α = β and as wi is shift-bounded we
have α∗ > γ∗, that is, γ 6= β, a contradiction. �

13 The Set A

Let u ∈ S∗(q) be a finite sequence not ending with 0 and let A(u) be
the set of infinite sequences on the alphabet {ũ,u,u∗,u′} defined by the
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transition matrix

A =


0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0

 ,

where the rows and columns are ordered in the order ũ,u,u∗,u′. The
elements of A(u) are sequences similar to the suffix given in (10.1) but
where the upper bounding k has been removed. Note that the transi-
tion matrix A is primitive and has the spectral radius ρ(A) = 2. By
Proposition 2.6 we have

Lemma 13.1 Let u ∈ S∗(q) be a finite sequence not ending with a 0.
Then

dimH A(u) =
1
|u|

log 2
log q

.

For the special case when having u = f i(1, 2) we have A(f i(1, 2)) =
S∞(2) for i = 0 and for i ≥ 0 we have the nested inclusions

A(f i+1(1, 2)) ⊂ A(f i(1, 2)). (13.1)

Definition 13.2 Let u ∈ S∗(q) be a finite sequence not ending with 0
and let

µu : A(u) → S∞(2)

be the map (ũ,u,u∗,u′) 7→ (0, 1, 0, 1). Let µ−1
u map the first 0 in each

block of zeros to ũ otherwise 0 is mapped to u∗ and let the first 1 in each
block of ones be mapped to u′ otherwise 1 mapped to u.

Note that µ could equally have been defined as a function between
sets of finite sequences, that is, µu : {x[1, n|u|] : x ∈ A(u)} → {x[1, n] :
x ∈ S∞(2)}.

A function T similar to our µu is defined by Allouche in [1]. The
function T is there used to show that the set Γ, defined in (9.4) is self
similar.

The function µu : A(u) → S∞(2) is not bijective as for U1 = [ũ] ∩
A(u) and U2 = [u′] ∩ A(u) we have µ−1

u (S∞(2)) = U1 ∪ U2, where the
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right-hand-side clearly is a proper subset of A(u). The violation of the
bijectivity is however only in the first positions, so by shifting these out
we have

σ|u|
(
µ−1

u (S∞(2))
)

= A(u).

If we restrict µ to map sequences from [ũ] ∩ A(u) into the cylinder-set
[0] we obtain a bijection as the sequences causing a collisions due to the
definition of the inverse of µ have been removed.

Example 13.3 Let u = 01. Then c1 = 0011 and c2 = 1011 are prefixes
of sequences in A(u). We have µu(0011) = 01 and µu(1011) = 01, but
µ−1

u (01) = 0011. �

Lemma 13.4 Let u ∈ S∗(q) be a finite sequence not ending with 0
such that u ≤ u′. Put U = [ũ] ∩ A(u) and V = [0], (or U = ([ũ] ∩
A(u))[1, |u|n] and V = ([0])[1, n] in the case of finite sequeces). Then
µu : U → V is bijective and order-preserving.

Proof: The bijectivity is clear from the just above reasoning of the
definition of the inverse of µ. For the order preservation let c1 < c2

be two sequences in U and let s1 = µ(c1) and s2 = µ(c2). Assume for
contradiction that s1 > s2. There is a smallest n such that (s1)n = 1
and (s2)n = 0. Let w1 = c1[n|u| + 1, (n + 1)|u|] and w2 = c2[n|u| +
1, (n + 1)|u|]. That is, w1 is the subsequence in c1 mapped into (s1)n

by µu, and similarly for w2. If (s1)n−1 = 1 then w1 = u and w2 = ũ,
contradicting c1 < c2. If (s1)n−1 = 0 then w1 = u′ and w2 = u∗, again
contradicting c1 < c2. Finally, if n = 1 then w1 = u′ and w2 = ũ, then
similarly this would imply c1 < c2. �

14 Dyadic Approximation

In this section we will turn our interest to the special case when having
q = 2, the binary case. A central role will be played by the classical
Thue-Morse sequence, see [4, 21, 22].

Definition 14.1 (Thue-Morse sequence) The sequence t recursive-
ly defined by t1 = 0 and t2n+1 = tn+1, t2n+2 = t∗n+1, is called the
Thue-Morse sequence.
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The first entries of the Thue- Morse sequence t and its inverse are
easily seen to be

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 . . .

t′ = 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

In [1, 2], Allouche and Cosnard observed that we may obtain the Thue-
Morse sequence via the limit under iteration of the function f .

Theorem 14.2 (Allouche, Cosnard) Let t be the Thue-Morse sequ-
ence. Then

σ(t′) = d(1, 2) = lim
n→∞

fn(1, 2)

Moreover the sequence σ(t′) is shift-bounded.

From Theorem 11.10 we now have the following corollary, also ob-
served by Dekking in [6],

Theorem 14.3 (Dekking, Mahler) Let t be the Thue-Morse sequen-
ce. Then the Thue-Morse constant τ =

∑∞
i=1

ti
2i+1 = 0.41245403 . . . is

transcendental.

Theorem 14.4 (Allouche, Cosnard) Let t be Thue-Morse sequence.
Then F (c, 2) is countable if and only if c > σ(t′).

We can say more than what stated in Theorem 14.4 about what set
F (c, 2) looks like for c > σ(t′). For c > (01)∞ we have F (c, 2) = ∅ and
F (c, 2) = {(01)∞, (10)∞} whenever c ∈ [01, (01)∞]. By the technique
of Lemma 11.16 we see that F (c, 2) is infinite, but countable, when
σ(t′) < c < 01.

The Thue-Morse sequence t also appears when looking at limit points
in sets of the form {‖ξαn‖}, for an algebraic number α and a real ξ. For
more of this see Dubickas [7].

In [14], Moreira improved Theorem 14.4 and showed that the se-
quence σ(t′) also is the threshold for the dimension of F (c, 2).

Theorem 14.5 (Moreira) Let t be the Thue-Morse sequence. Then
we have dimH F (c, 2) = 0 if and only if c ≥ σ(t′).
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We will generalise the result by Allouche, Cosnard and Moriera and
show that the Thue-Morse sequence t is connected to the threshold for
the dimension of F (c, q) for any q ≥ 2, see Corollary 15.10 and Theorem
16.9.

Lemma 14.6 For u = f i−1(1, 2) where i ≥ 1 let U = [ũ] ∩ A(u). If
c is an infinite shift-bounded e2,i-sequence then c ∈ U . If c is a finite
shift-bounded e2,i-sequence then c is a prefix of a sequences in U and
|c| = k · 2i−1 for some k ≥ 3.

Proof: There is a maximal N and a sequence v such that c = ũ(u∗)Nv
with v > u∗ as an e2,i-sequence must start with ũ(u∗). By shifting
n = (1 +N)|u| times we obtain from c′ = u′uNv′ > σn(c) = v′ that u′

must be a prefix of v. Hence Lemma 10.2 gives that c ∈ U if c is infinite
or that c is the prefix of a sequence in U if c is finite. Moreover, since
u′ is a prefix of v we have that |c| ≥ 3|u|.

For the length of c in the finite case we have to show that u and u′

are the only allowed suffixes of c of length |u| and moreover we may not
find u or u′ by cutting an ending ũ, u, u∗ or u′ off.

The sequence c cannot end with ũ or u∗ as it then would end with
a zero, contradicting c being shift-bounded.

If c ends with a prefix v of ũ then there is an n such that σn(c) = v ≤
ũ < c, contradicting the shift-boundedness of c. The same procedure
holds for a proper prefix of u.

If c ends with a proper prefix v of u∗ then c must end with ũ(u∗)mv
for some 0 ≤ m, as c is prefix of a sequence in U . If c = ũ(u∗)mv then
it would not be an e2,i-sequence. Hence c must end with

ũ(u∗)ru′(u)sũ(u∗)mv.

But then for n = (2 + r + s)|u| we have σn(c) = ũ(u∗)mv < c, contra-
dicting the shift-boundedness of c. �

Corollary 14.7 An e2,i-minimal sequence for i ≥ 1 is of length k · 2i−1

for some k ≥ 3.

Lemma 14.8 For u = f i−1(1, 2) where i ≥ 1 let U = [ũ] ∩ A(u) and
V = [0], (or U = ([ũ] ∩ A(u))[1, |u|n] and V = ([0])[1, n] in the case of
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finite sequences). Then µu : U → V is a bijection between e2,i-minimal
sequences and e2,1-minimal sequences.

Proof: It is clear that an e2,1-minimal sequence is a prefix of a sequence in
V and by Lemma 14.6 an e2,i-minimal sequence is a prefix of a sequences
in U .

Let c be a prefix of a sequence in U such that |c| = k|u|, for some
k ≥ 3, and let s = µu(c). Since gn|u|,1(c) ends with either u or u′ and
begins with ũ it follows that gn|u|,1(c)∞ is an element in U . Similarly
we have that e(gn|u|,1(c), 2)[1, n|u|] ends with either ũ or u∗ and since
(gn|u|,1(c))∗ begins with u′ we have that also e(gn|u|,1(c), 2) is an element
of U .

Lemma 14.6 gives that we only have to check for minimality of c in
prefixes of length k|u| for k ≥ 3. Assume there is an n ≥ 2|u| = 2i such
that

e(gn|u|,1(c), 2) ≤ c ≤ gn|u|,1(c)∞

does not hold. Then the order-preservation of µ gives that

e(gn,1(s), 2) ≤ s ≤ gn,1(s)∞

cannot hold either. �

Theorem 14.9 For u = f i−1(1, 2) for some i ≥ 1 put U = A(u) and
V = S∞(2), (or put U = A(u)[1, |u|n] and V = S∞(2)[1, n] for the
finite case). Let µu : U → V and let c be an e2,i-sequence such that
µu(c) is well defined. Then

dimH F (c, 2) =
1

2i−1
dimH F

(
µu(c), 2

)
.

Proof: Let S = ([ũ]∪ [u′])∩F (c, 2). By the order-preservation of µ and
Lemma 10.2 we have µu(S) = F (µu(c), 2). Moreover µ−1

u (µu(S)) ⊂
F (c, 2). Hence dimH F (µu(c), 2) ≤ 2i−1 dimH F (c, 2).

For the reversed inequality, let x ∈ F (c, 2). If x does not contain
00 nor 11 then x is either of the sequences (01)∞ or (10)∞. If x does
contain two consecutive zeros or ones then Lemma 10.2 gives that x
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ends with a sequence which is an element in A(f1(1, 2)). Therefore, and
by the use of the nested inclusion (13.1), we have that

∞⋃
n=1

v[1, n]w : v ∈ F (f i(1, 2), 2), w ∈
2|u|−1⋃
k=|u|

σk
(
µ−1

u

(
F (µu(c), 2)

)) ,

contains F (c, 2), which implies the desired inequality. �

Corollary 14.10 Let i ≥ 0. Then

dimH F (e2,i, 2) =
1
2i
.

By Corollary 14.7 we directly obtain Moreira’s Theorem 14.5.

15 Triadic Approximation

The Thue-Morse sequence t has the property,

Theorem 15.1 (Thue) The Thue-Morse sequence t does not contain
a subsequence of the form asasa, where a ∈ {0, 1} and s ∈ S∗(2). That
is, t is said to be overlap-free.

From t Thue constructed the sequence v as follows: for n ≥ 1 let vn

be the number of 1’s between the n’th and (n+ 1)’st occurrence of 0 in
the Thue-Morse sequences t. Hence

v = 21 0 2 0 1 2 1 0 1 2 . . . (15.1)

From Theorem 15.1 it is clear that v is a sequence on 3 symbols. Thue
used Theorem 15.1 to prove the following result

Theorem 15.2 (Thue) The sequence v is square free, i.e. it does not
contain s2 for any sequence s.

For a proof of Theorem 15.1 and Theorem 15.2 we refer to [21, 22]
or see the work of Berstel [5] and references therein.
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Definition 15.3 Let T : S(3) → S(2) be the map defined by (0, 1, 2) 7→
(0, 01, 011).

The map T is the transformation used by Thue to obtain the se-
quence v from the Thue-Morse sequence t, that is, T (v) = t.

Lemma 15.4 Let i ≥ 1. Then f i(1, 2) = T (f i−1(1, 3)).

Proof: The proof is made by induction. As the basis steps we have

T (f0(1, 3)) = T (1) = 01 = f1(1, 2)

T (f1(1, 3)) = T (02) = 0011 = f2(1, 2)

T (f2(1, 3)) = T (0121) = 00101101 = f3(1, 2)

Assume that the statement is true for any i < k with k ≥ 3. For the
induction step, k = i, let u = fk−3(1, 3) and w = fk−2(1, 2). Then by
the assumption we have T (u) = w and

T (f(u, 3)) = T
(
ũ(ũ)∗

)
= w̃(w̃)∗ = f(w, 2).

Since u ends with a non-zero symbol, as it is shift-bounded, the assump-
tion gives that T (ũ) = w[1, |w| − 1] and therefore

T
(
ũ(ũ)∗

)
= w[1, |w| − 1]0(w̃)∗ = w̃(w̃)∗.

This implies that we must have T ((ũ)∗) = 0(w̃)∗, but then also T (u∗) =
0 w∗[1, |w| − 1]. Thus, we have

T (fk−1(1, 3)) = T (f2(u, 3))
= T

(
ũ u∗(ũ)∗u

)
= T

(
ũ
)
T
(
u∗
)
T
(
(ũ)∗

)
T
(
u
)

= w[1, |w| − 1] 0 w∗[1, |w| − 1] 0(w̃)∗w

= w̃ w∗(w̃)∗w
= f2(w, 2)
= fk(1, 2),

which completes the proof. �
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Corollary 15.5 Let i ≥ 1. Then T (e3,i−1) = e2,i.

Proof: Let u = f i−1(1, 3) and w = f i(1, 2). Then by Lemma 15.4 we
have that T (u) = w. By the same arguments as in the proof of Lemma
15.4 we have T (ũ) = w[1, |w| − 1] and T (u∗) = 0 w∗[1, |w| − 1]. This
gives

T (e3,i−1) = T
(
ũ (u∗)∞

)
= T (ũ)T (u∗)∞

= w[1, |w| − 1]
(
0 w∗[1, |w| − 1]

)∞
= w[1, |w| − 1] 0

(
w∗[1, |w| − 1] 0

)∞
= w̃(w∗)∞

= e2,i,

which is the desired result. �

As a second corollary we have that we may obtain Thue’s sequence
v directly from iterations of f and do not have to go via the Thue-Morse
sequence t, (compare the corollary to Allouche’s and Cosnard’s Theorem
14.2).

Corollary 15.6 Let v be Thue’s sequence from (15.1). Then

v′ = d(1, 3) = lim
n→∞

fn(1, 3).

Moreover the sequence v′ is shift-bounded.

Theorem 15.7 Let c ∈ S(3) be an e3,i-sequence for some i ≥ 1. Then

T (F (c, 3)) = F (T (c), 2) ∩ [0].

Proof: Let x ∈ F (c, 3) and assume there is an n such that σn(T (x)) <
T (c). Then σn(T (x)) begins with a zero and hence T−1(σn(T (x))) is
well defined and is equal to σm(x) for some m, and thus σm(x) <
c = T−1(T (c)). But this contradicts our assumption x ∈ F (c, 3). For
the upper bounding inequality assume there is an n such that T (c)′ <
σn(T (x)). Then we also have 0T (c)′ < 0σn(T (x)), which implies

c′ ≤ T−1(0T (c)′) < T−1
(
0σn(T (x))

)
= σm(x)
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for some m. This because we may assume that if c is finite it does not
end with a zero. We have reached a contradiction to our assumption
x ∈ F (c, 3). Thus we must have T (x) ∈ F (T (c), 2) ∩ [0], and hence

T (F (c, 3)) ⊂ F (T (c, 2) ∩ [0].

For the reversed inclusion, note that T (e0,3) = 00(10)∞ = e2,1 and
therefore no sequences in F (T (c), 2) ∩ [0] contain more than 2 consec-
utive zeros nor ones, which gives that T−1(u) is well-defined for all
u ∈ F (T (c), 2)∩ [0]. Let u ∈ F (T (c), 2)∩ [0]. Assume there is an n such
that σn(T−1(u)) < c. But then we must have σm(u) < T (c) for some
m, a contradiction. The upper inequality, c′ ≥ σn(T−1(u)), follows in
the same way. Hence T (F (c, 3)) ⊃ F (T (c), 2)∩ [0], which completes the
proof. �

Lemma 15.8 Let c be an e3,i-sequence for some i ≥ 1. Then

dimH F (c, 3) =
2 log 2
log 3

dimH F (T (c), 2).

Proof: An element x ∈ F (c, 3), where c is an e3,i-sequences for some
i ≥ 1, is of the form

0 1k12 1k20 1k32 1k4 . . . ,

or shifts thereof. This gives that T expands the length of x by a factor
two. Combining this expansion factor with the change of alphabet we
obtain the Hölder condition

C1 δ3(x,u)
2 log 2
log 3 ≤ δ2(T (x), T (u)) ≤ C2 δ3(x,u)

2 log 2
log 3

for some constants C1 and C2 and for the metric δq(x,u) =
∑∞

i=1 |xi −
ui|q−i. The statement now follows from Proposition 2.6 and Theorem
15.7. �

Corollary 15.9 Let i ≥ 0. Then

dimH F (e3,i, 3) =
1
2i

log 2
log 3

.
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Corollary 15.10 Let v be Thue’s sequences from (15.1) and c ∈ S(3).
Then dimH F (c, 3) = 0 if and only if c ≥ v′, and F (c, 3) is countable if
and only if c > v′.

Proof: Use Allouche’s and Cosnard’s Theorem14.4, Moreira’s Theorem
14.5, Theorem 15.7 and Lemma 15.8. �

Lemma 15.11 Let s be a finite shift-bounded e3,i-sequences for some
i ≥ 1. Then s contains the same number of 0’s as 2’s.

Proof: An e3,i-sequences must be of the form

s = 01k12 1k20 1k32 1k4 . . . .

If s ends with 01k then by shifting this block up to the front we obtain
σn(s) = 01k < 01k12 . . ., a contradiction to s being shift-bounded. �

Corollary 15.12 Let s be a finite shift-bounded e3,i-sequences for some
i ≥ 1. Then |T (s)| = 2|s|.

Lemma 15.13 The map T is a bijection between the set of e3,i-minimal
sequences and e2,i+1-minimal sequences for i ≥ 1.

Proof: Let x ∈ S∗(2) be an e2,i+1-minimal sequence and let c = T−1(x).
Assume there is an 2i ≤ n < |c| and an r ∈ {1, 2} such that

e(gn,r(c), 3) ≤ c ≤ gn,r(c)∞.

The order-preservation of T gives e(gm,1(x), 2) ≤ x ≤ gm,1(x)∞ for some
m < |x|. Corollary 15.12 gives that 2i+1 ≤ m, that is, a contradiction
to the minimality of x.

Conversely let c ∈ S∗(3) be an e3,i-minimal sequence and let x =
T (c). Assume mx < |x|. That is, mx is the smallest m ≥ 2i+1 such that

e(gm,1(x), 2) ≤ x ≤ gm,1(x)∞.

Since minimality implies shift-boundedness it follows from that gmx,1(x)
does not contain three consecutive ones, as it begins with precisely two
zeros, that T−1(gmx,1(x)∞) and T−1(e(gmx,1(x), 2)) are well defined.
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This gives e(gn,r(c), 3) ≤ c ≤ gn,r(c)∞ for some n < |c|. As gmx,1(x)
begins with precisely two zeros it cannot, by being shift-bounded, have
001 as a suffix. Hence T−1(gmx,1(x)) contains equally many 0’s as 2’s,
which implies 2i ≤ n and we have therefore reached a contradiction to
the minimality of c. �

Let ui = f i(1, 2). Then by Lemma 14.8 we have that µui is a
bijection between the e2,i- and e2,1-minimal sequences. Let µui,uj =
µ−1

uj
◦ µui is a bijection between the e2,i- and e2,j-minimal sequences.

Corollary 15.14 Let µ := µui,u2 be the bijection between ei,2- and
e2,2-minimal sequences as described above. Then for an e3,i-minimal
sequence c with i ≥ 1 we have

dimH F (c, 3) =
1

2i−1
dimH F

(
T−1(µ(T (c))), 3

)
.

In particular, the sequence T−1(µ(T (c))) is an e3,1-minimal sequence.

Proof: By applying Theorem 15.7, Theorem 14.9 and Lemma 15.13 we
get

dimH F (c, 3) =
2 log 2
log 3

dimH F (T (c), 2)

=
1

2i−1

2 log 2
log 3

dimH F (µ(T (c)), 2)

=
log 3

2 log 2
1

2i−1

2 log 2
log 3

dimH T−1(F (µ(T (c)), 2) ∩ [0])

=
1

2i−1
dimH F (T−1(µ(T (c))), 3),

which proves the desired result. �

16 q-adic Approximation

Similar to Definition 5.11 we define the re-alphabetisation function, but
with a slight modification of the image set.
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Definition 16.1 Let R be the re-alphabetisation function such that for
x ∈ S(q) we have R(x) ∈ S(q + 2) and R(x)i = xi + 1.

Example 16.2 Let x be the binary sequence 01 then R(x) = 12 ∈
S∗(4). Similarly, for the ternary sequence u = 012∞ we have R(u) =
123∞ ∈ S∞(5) and R2(u) = 234∞ ∈ S∞(7). �

Note that we have R(eq,i) = eq+2,i for i ≥ 0, so there is just two
types of eq,i-sequences, those obtained for q odd and those obtained for
q even. Note also that from Lemma 11.5 we have that R−1 is well defined
for any shift-bounded sequence c ∈ S(q+2) which starts with a non-zero
symbol.

Lemma 16.3 For sequences u,v ∈ S(q) the re-alphabetisation function
R fulfils the Hölder condition

δq+2

(
R(u), R(v)

)
= δq(u,v)

log q
log(q+2) .

Proof: This is a direct consequence form the definition of the distance
δq form (2.1). �

Lemma 16.4 If s is an eq,i-sequence for some i ≥ 1 then s is an eq,i-
minimal sequence if and only if R(s) is an eq+2,i-minimal sequence.

If s is an erq,0-sequence for some r ∈ {1, 2, . . . [ q
2 ] − 1} then s is an

erq,0-minimal sequence if and only if R(s) is an er+1
q+2,0-minimal sequence.

Proof: The Lemma follows directly from the order-preservation of R and
Lemma 11.5. �

Theorem 16.5 Let c ∈ S(q). Then

R(F (c, q)) = F (R(c), q + 2).

Proof: It is clear that R(F (c, q)) ⊂ F (R(c), q + 2). For the reversed in-
clusion, let x ∈ F (R(c), q+2). If x would contain a 0 at position n then
σn(x) < R(c) which would contradict x ∈ F (R(c), q + 2). Similarly we
have that x does not contain the symbol q+ 1. Hence R−1(x is well de-
fined and R−1(x) ∈ S∞(q). If there exists anm such that σm(R−1(x)) <
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c then we would have R(σn(R−1(x))) = σm(x) < R(c), a contradic-
tion to our assumption. The upper inequality follows similarly. Hence
R−1(x) ∈ F (c, q) and therefore we get R(F (c, q)) ⊃ F (R(c), q + 2). �

Example 16.6 (Generalisation of Example 12.19). If q is even, i ≥ 2
and c is a finite eq,i-minimal sequence then by applying the re-alphabet-
isation function R to the prefix p = 01(10)k11 we have by Theorem
16.5 that there is no sequence w such that cwz∞ ∈ F (c, q) for z =
c1 (q− c1−1). The procedure when q is even and i ≥ 2 follows the same
pattern. �

Corollary 16.7 Let c ∈ S(q). Then

dimH F (c, q) =
log(q + 2)

log q
dimH F (R(c), q + 2).

Proof: Apply Lemma 16.3 and Proposition 2.6 to the result of Theorem
16.5. �

We can now generalise Corollary 14.10 and Corollary 15.9.

Theorem 16.8 If i ≥ 0 then

dimH F (eq,i, q) =
1
2i

log 2
log q

.

Proof: First the case when q is even. By Corollary 16.7 and Corollary
14.10 we have

dimH F (eq,i, q) =
log 2
log q

dimH F (e2,i, 2) =
1
2i

log 2
log q

.

Similarly, if q is odd then Corollary 16.7 and Corollary 15.9 gives

dimH F (eq,i, q) =
log 3
log q

dimH F (e3,i, 3)

=
log 3
log q

2 log 2
log 3

dimH F (e2,i+1, 2)

=
log 2
log q

2
2i+1

,
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which proves the theorem. �

We can now formulate the generalisation of Allouche’s and Cosnard’s
Theorem 14.4 and Moreira’s Theorem 14.5 to any q ≥ 2.

Theorem 16.9 Let n = [ q
2 ]− 1 and c ∈ S(q).

- If q is even let t be the Thue-Morse sequence. Then F (c, q) is
countable if and only if c > Rn(σ(t′)) and dimH F (c, q) = 0 if and
only if c ≥ Rn(σ(t′)).

- If q is odd let v be Thue’s sequences from (15.1). Then F (c, q) is
countable if and only if c > Rn(v′) and dimH F (c, q) = 0 if and
only if c ≥ Rn(v′).

Proof: For the case with q even, the result follows from Allouche and
Cosnard’s Theorem 14.4, Moreira’s Theorem 14.5 and Theorem 16.5.
The case with q odd is obtained from Corollary 15.10 and Theorem
16.5. �

Theorem 16.10 If q is even and i ∈ {0, 1}, or q is odd and i = 0 then
for a finite eq,i-minimal sequence c the system σ : F (c, q) → F (c, q) is
topologically mixing.

Proof: Let U = [u]∩F (c, q) and V = [v]∩F (c, q) and assume they are
both non-empty. By Lemma 12.17 there is a k such that [u[1, k]c] ∩ U
is non-empty and by Lemma 12.18 there exists a finite sequence w such
that u[1, k]c w z∞ ∈ U , where z = c1(q − c1 − 1).

For the case when q is even, let a = c1 if v1 = q − c1 − 1 otherwise
let a be void. Then there exists an N1 such that[

u[1, k] c w zn1a v
]
∩ U 6= ∅ (16.1)

for n1 > N1. As c is a finite eq,i-minimal sequence there exists N2 and
N3 such that [

u[1, k] c w zn2c1 zn3a v
]
∩ U 6= ∅ (16.2)

for n2 > N2 and n3 > N3. Combining (16.1) and (16.2) gives σn(U) ∩
V 6= ∅ for all n larger than some N4.
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Now assume that q is odd. Since c is an eq,0-sequence we have that
c < ([ q

2 ] − 1)[ q
2 ]k = e([ q

2 ], q)[1, k + 1] for some k > K. But then also
c′ > ([ q

2 ] + 1)[ q
2 ]k. Hence there exists an N5 and an N6 such that[

u[1, k] c w zn5 [ q
2 ]n6 v

]
∩ U 6= ∅

for n5 > N5 and n6 > N6. This gives σn(U) ∩ V 6= ∅ for all n larger
than some N7. �

Corollary 16.11 If q is even and i ∈ {0, 1}, or q is odd and i = 0 then
for a finite eq,i-minimal sequence c the transition matrix Ac correspond-
ing to F (c, q) is primitive.

The mixing result in Theorem 16.10 can not be extend to be valid
for any eq,i-minimal sequence other than those stated in the Theorem
16.10. We give an example to illustrate this.

Example 16.12 By Example 12.19 and Example 16.6 it follows that
we can not have topologically mixing in the case for finite eq,i-minimal
sequence, for any q ≥ 2 and any i ≥ 2.

In the case q = 3 and i ≥ 1 we have that any finite e3,1-minimal
sequence c must have a prefix p of the form 01k2 for some k > 0. If
letting u = 1 ∈ S∗(3) we see that p = ũ(u∗)ku′. Hence Lemma 10.2
gives that σn([01k2])∩ [1k+1] = ∅ for all n and therefore is σ : F (c, 3) →
F (c, 3) not topologically mixing. Theorem 16.5 generalises this property
for any finite e3,1-minimal sequence to any eq,i-minimal sequence with
odd q ≥ 3 and i ≥ 1. �

There are s which are not eq,i-minimal sequences but the system
σ : F (s, q) → F (s, q) is topologically mixing. To see this, assume that c
is a finite eq,i-minimal sequences such that we have that σ : F (c, q) →
F (c, q) is topologically mixing. Then Lemma 10.1 gives that for any
s ∈ [c, c∞] we have F (c, q) = F (s, q). Hence we can find a sequence
which is not eq,i-minimal but still gives the mixing property.

Definition 16.13 For an eq,i-sequence c we define the interval I(c, q)
to be the set

I(c, q) = {x ∈ S∞(q) : e(gmc,kc(c), q) ≤ x ≤ (gmc,kc(c))∞} .
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The next theorem says that the definition of I(c, q) is independent of
the choice of the representative c.

Theorem 16.14 For any a ∈ I(c, q) we have I(a, q) = I(c, q).

Proof: We may assume that c is a finite eq,i-minimal sequence. First
consider the case c < a < c∞. If mc > ma then the eq,i-minimality of c
and Lemma 4.6 gives

c < a ≤ gma,ka(a)∞ = gma,ka(c)∞ < c,

a contradiction. If mc < ma then similarly,

c∞ = gmc,kc(c)∞ = gmc,kc(a)∞ < gma,ka(a) ≤ a,

a contradiction to a ∈ I(c, q). Let us turn to the case e(c) < a < c. If
mc > ma then

a < e(gmc,kc(a)) = e(gmc,kc(c)),

which contradicts a ∈ I(c, q). Finally, if mc < ma then we would have

c < e(gma,ka(c)) = e(gma,ka(a)) ≤ a < c,

again a contradiction. �

Theorem 16.15 The interval I(c, q) is the largest interval I on which
we have dimH F (c, q) = dimH F (a, q) for a ∈ I.

Proof: We may assume that c is a finite eq,i-minimal sequence. By
Lemma 10.1 we have that F (c, q) = F (c∞, q) and therefore

dimH F (c, q) = dimH F (c∞, q).

Lemma 11.16 gives that dimH F (c, q) = dimH F (f(c), q). Let x be an
element in F (e(c, q), q) \ F (f(c, q), q). As f(c, q) = c̃ c′ we have from
Lemma 10.2 that x must end with a sequence in A(c). Moreover, since
c is a finite eq,i-sequence we have

dimH A(c) =
1
|c|

log 2
log q

≤ 1
2i

log 2
log q

= dimH F (eq,i, q)

≤ dimH F (c, q).
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Combining the above chain of inequalities with Lemma 10.2 shows that
dimH F (c, q) = dimH F (e(c, q), q).

For the maximallity, assume first that q is even and i ∈ {0, 1}, or
q is odd and i = 0. Let Ac be a transition matrix corresponding to
F (c, 2). Lemma 12.15 gives that there is a sequence {ak} of finite eq,i-
minimal sequences growing to e(c, q). Let Ak be the transition matrix
corresponding to F (ak, q). From Corollary 16.11 it follows that Ac and
Ak are primitive matrices. As (ak)∞ ∈ F (ak, q) \ F (c, q) we have that
Ak ≥ Ac, entry by entry, (we may rescale the matrices to have the same
size), and where the inequality is strict for at least one pair of indices
r, s. As Ak is primitive it follows from the Perron-Frobenius Theorem
2.2 and Theorem 2.8 that

dimH F (ak, q) > dimH F (c, q),

and therefore the interval I(c, q) cannot be extended leftward. Similarly,
we use the sequence {bk} from Lemma 12.16 to show that c∞ is the right
endpoint of the interval I.

By Lemma 14.8 and Theorem 14.9 we may now extend the result to
be valid in any interval [e2,i−1, eq,i) for i ≥ 2 and Lemma 15.8 settles
the case of q = 3 and i ≥ 1. Finally Theorem 16.5 implies the result for
any q ≥ 2 and i ≥ 0. �

Example 16.16 For the e2,1-minimal sequence c = 001 we have the
interval I(c, 2) = [000(110)∞, (001)∞], which corresponds to the real
interval I(1

8 , 2) = [ 3
28 ,

1
7 ]. Note that set F (c, 2) is the set of infinite

binary sequence s which contains at most 2 consecutive zeros or ones.
The corresponding transition matrix Ac to F (c, 2) is

Ac =


0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 0

 (16.3)

The spectral radius of the transition matrix Ac gives

dimH F (c, q) = dimH F (001, 2) =
log 1+

√
5

2

log 2
≈ 0.69424.
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�

Example 16.17 For the e7,2-minimal sequence c = 234243 it would
be hard to directly calculate the spectral radius of the transition ma-
trix Ac associated to F (c, 7), as Ac would be of size 75 × 75. The
re-alphabetisation R function gives the e3,2-minimal sequence R−2(c) =
012021. Then the map T gives T (R−2(c)) = 0010 1100 1101, and if we
let u = 0011, the function µu simplifies the problem substantially. We
get µu(T (R−2(c))) = 001, and hence we have the same transition matrix
as (16.3). This gives

dimH F (c, 7) =
log 3
log 7

dimH F (R−2(c), 3)

=
2 log 2
log 7

dimH F (T (R−2(c)), 2)

=
1
2

log 2
log 7

dimH F (µu(T (R−2(c))), 2)

=
1
2

log 1+
√

5
2

log 7
≈ 0.12365.

�

Example 16.18 The eq,0-minimal sequences of length 1 are the se-
quences cr = r with 0 ≤ r < q

2 . A transition matrix Acr of size q × q
associated to F (cr, q) is

Acr =

 0 . . . 0 1 . . . 1 0 . . . 0
...

...
...

...
...

...
0 . . . 0 1 . . . 1 0 . . . 0


r︷ ︸︸ ︷ q−2r︷ ︸︸ ︷ r︷ ︸︸ ︷

It is not hard to see that the spectral radius of Acr is q − 2r. Hence we
have

dimH F (er
q,0, q) = dimH F (e(r, q), q) =

log(q − 2r)
log q

(16.4)

for 0 ≤ r < q
2 . �

85



Johan Nilsson

Denote by IEM (q, i) the set of infinite eq,i-minimal sequences and
let us define the set of all eq,i-minimal sequences for all i ≥ 0 by

IEM (q) =
∞⋃
i=0

IEM (q, i). (16.5)

From Lemma 11.17 we have the following corollary

Corollary 16.19 The set IEM (q) has Lebesgue measure 0.

Proof: From Lemma 12.13 we have that IEM (q) is contained in the set
of infinite shift-bounded sequences ISB(q), from (11.3). Hence the result
follows from Lemma 11.17. �

Theorem 16.20 The derivative of φq is zero Lebesque a.e.

Proof: The sequences which give rise to one-point intervals I(c, q) =
{c} are precisely the sequences c ∈ IEM (q). As IEM (q) has Lebesgue
measure 0 we must have that the complementary set, the set formed by
the intervals, has full Lebesgue measure. �

Let us turn to the question of continuity of the function φq : c 7→
dimH F (c, q). In [14], Labarca and Moreira show that the Hausdorff
dimension of the set

{x ∈ S∞(2) : a ≥ σn(x) ≥ b for all n ≥ 0}

depends continuously on the parameters a and b. This clearly implies
the continuity of φ2. We will extend this result and show that the
continuity of φq for any integer q ≥ 2. For the next counting lemma
recall that by | · | we mean the cardinality of a set.

Lemma 16.21 Let c be a finite eq,i-minimal sequence and let ak =
ak(c, q) and bk = bk(c, q).

1. There is a constant C such that |F (ak, q)[1, k]| ≤ C|F (c, q)[1, k]|
for all k ≥ 1.
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2. Given k large enough, there is a constant C such that for all n ≥ 1
we have

∣∣F (bk, q)[1, n]
∣∣ ≥ C

∣∣F (c, q)[1, n]
∣∣ (1− 1

k

)n

.

Proof:(1). Let x ∈ F (ak, q)[1, k] \ F (c, q)[1, k]. Then x may start with
a prefix of a sequence in F (c, q) and must end with a prefix of ak Hence
we have

∣∣F (ak, q)[1, k]
∣∣ ≤

k∑
i=1

∣∣F (c, q)[1, i]
∣∣

≤ k1

k∑
i=1

λi
c

≤ k2λ
k
c

≤ C
∣∣F (c, q)[1, k]

∣∣
for some constants k1 and k2 and where log λc is the topological entropy
of F (c, q).

(2). Similarly, a sequences d in the set F (c, q)[1, n] \F (bk, q)[1, n] must
contain, at least once, the subsequence u = ck c[1, |p(c, q)|], (or the in-
verse u∗). To see this, the sequence bk is strictly larger than u and hence
no sequence in F (bk, q)[1, n] can contain the subsequence u. Conversely,
as u is larger than

(
c[1, nc]∞

)
[1, |u|] we have that u is an allowed pat-

tern in sequences in F (c, q)[1, n]. The same argumentation hold for u∗.
The number of sequences of length n that contains the patterns u or u∗

precisely r times, is bounded by

2r

(
n− r|u|

r

)∣∣F (bk, q) [1, n− r|u|]
∣∣,
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this, by looking at the number of places the pattern u can be placed in.
We have by summing up for a k large enough

C
∣∣F (c,q)[1, n]

∣∣ ≤
≤ λn

bk
+ 2
(
n− |u|

1

)
λ

n−|u|
bk

+ 22

(
n− 2|u|

2

)
λ

n−2|u|
bk

+ . . .

≤ λn
bk

1 +
(
n

1

)
2

λ
|u|
bk

+
(
n

2

)
22

λ
2|u|
bk

+ . . .


≤ λn

bk

1 +
2

λ
|u|
bk

n

≤ λn
bk

(
1 +

1
k

)n

,

as by Moreira’s Theorem 14.5 we have λbk
> 1, which concludes the

lemma. �

Theorem 16.22 The map φq is continuous.

Proof: By Theorem 2.8 we just have to show that the entropy of F (c, q)
depends continuously on c. It is clear that for any sequence c the es-
timate |F (c, q)[1, rn]| ≤ |F (c, q)[1, n]|r holds. Let ak = ak(c, q) and
bk = bk(c, q). Hence by Lemma 16.21 it follows that

htop

(
F (c, q)

)
≤ lim

k→∞
htop

(
F (ak, q)

)
= lim

k→∞
lim

n→∞

1
n

log
∣∣F (ak, q)[1, n]

∣∣
= lim

k→∞
lim

r→∞

1
rk

log
∣∣F (ak, q)[1, rk]

∣∣
≤ lim

k→∞
lim

r→∞

1
rk

log
∣∣F (ak, q)[1, k]

∣∣r
≤ lim

k→∞

1
k

logC
∣∣F (c, q)[1, k]

∣∣
= htop

(
F (c, q)

)
,
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which shows the left-continuity of the entropy in the left endpoint of the
interval I(c, q). The right-continuity follows trivially as the entropy is
constant in a neighbourhood to the right of this point. In the same way
the left-continuity in the right endpoint of I(c, q) is also clear. Again by
Lemma 16.21 we have

htop

(
F (c, q)

)
≥ lim

k→∞
htop

(
F (bk, q)

)
= lim

k→∞
lim

n→∞

1
n

log
∣∣F (bk, q)[1, n]

∣∣
≥ lim

k→∞
lim

n→∞

1
n

log
(
C
∣∣F (c, q)[1, n]

∣∣ (1− 1
k

)n)
= htop

(
F (c, q)

)
+ lim

k→∞
log
(

1− 1
k

)
= htop

(
F (c, q)

)
,

and the right-continuity in the right endpoints follows and concludes the
theorem. �

For the rest of this section we turn our interest to the set of all
infinite eq,i-minimal sequences for all i ≥ 0, the set IEM (q), defined in
(16.5).

We define the function ψq : S∞(q) → [0, 1] by

ψq(c) = dimH

(
IEM (q) ∩ [c, (q − 1)∞]

)
.

Note that we equally could have defined the function ψ as a function on
the real interval [0, 1]. In comparison to φq the function ψq is defined on
the parameter-space while φq is a function on the phase-space.

Theorem 16.23 For c ∈ S∞(q) we have ψq(c) = φq(c).

Proof: Since IEM (q) ∩ [c, (q − 1)∞] ⊂ F (c, q) we have ψq(c) ≤ φq(c).
Let us turn to the reversed inequality. Assume that c is a finite eq,i-
minimal sequence. From Lemma 12.16 there is a sequence {bk(c, q)}
of eq,i-minimal sequences tending to c∞. Put vk = bk(bk(c, q), q) and
define

Nk =
{
bk(c, q) u : u ∈ [vk] ∩ F (vk, q)

}
.
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We have IEM (q) ∩ [c, (q − 1)∞] ⊃ Nk and

dimH Nk = dimH F (vk, q).

By choosing k sufficiently large we have that dimH Nk is arbitrarily close
to φq(c). �

From Theorem 16.23 we can deduce that the dimensional structure
of Allouche’s and Cosnard’s set Γ(2) is the same as the dimensional
structure of F (c, q).

Corollary 16.24 Let ISB(q) be the set of infinite shift-bounded se-
quences from a q letter alphabet. Then

dimH

(
ISB(q) ∩ [c, (q − 1)∞]

)
= dimH

(
Γ(q) ∩ [0, c′]

)
= φq(c),

where Γ(q) is the set defined in (9.4).

Proof: Let Γ(q)′ be the set {x′ : x ∈ Γ(q)}. Then we have the chain of
inclusions

IEM (q) ∩ [c, (q − 1)∞] ⊂ ISB(q) ∩ [c, (q − 1)∞]
⊂ Γ(q)′ ∩ [c, (q − 1)∞]
⊂ F (c, q).

Theorem 16.23 now gives the result. �

17 Numerics

By characterising the dimension of F (c, q) via the spectral radius of
a primitive transition matrix the problem of numerically calculate an
approximative value of φ reduces to calculate the eigenvalues of the
transition matrix.

The graph of c 7→ dimH F (c, 2), (see figure 5) was calculate by con-
sidering e2,1-minimal sequence of length at most 8, which gives transition
matrices of size 128 × 128, and then using Theorem 14.9 to obtain the
values of dimH F (c, 2) for e2,i-minimal sequences with i > 1.

The graph of φ3, (see figure 6) was calculate by considering e0,3-
minimal sequence of length at most 6, which gives transition matrices of
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Figure 5: The graph of
c 7→ dimH F (c, 2).
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Figure 6: The graph of
c 7→ dimH F (c, 3).

size 243×243. Then all e2,2-minimal sequence of length 16 was calculated
and the graph was obtained via Corollary 15.14.

The graph of φ4, (see figure 7) was calculate by considering e14,0-
minimal sequence of length at most 4, which gives transition matrices of
size 256×256. Then all e2,1-minimal sequence of length 8 was calculated
and the complete graph was obtained via Corollary 16.7 and Theorem
14.9.

A finer subdivision of the interval [0,1], that is, to consider longer
minimal sequences, would require harder calculation as the runtime com-
plexity of the computation is exponential in the length of the minimal
sequences.
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Figure 7: The graph of
c 7→ dimH F (c, 4).
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18 Conclusion

The work in the thesis has been devoted to the field of diophantine ap-
proximation and in particular the study of q-adically badly approximable
numbers, BAN . We have considered two different kinds of approxima-
tion model, the one-side in Part I and the two-sided in Part II. A main
difference between the two models is, in general, the lack of the topolo-
gial property of mixing in the two-sided model. The lack of mixing
severely complicates the investigation and description of the approxima-
tion model. The models have previously been studied in other contexts
and different formulations by Urbanski [23], Allouche and Cosnard [1, 2]
and Moreira and Labarca [12, 14]. We have used several of their results
and in many cases extended and completed them.

To continue the study of diophantine approximation and q-adically
badly approximable numbers we think the following questions are of
interest,

1. A natural and interesting question is whether the generalised two-
sided approximation model

F 2(c, β) =
{
x ∈ S :

∥∥∥∥x− m

βn

∥∥∥∥ < c

βn
finitely often

}
,

for an arbitrary β > 1, has the same dimensional properties as
F 2(c, q) for an integer.

2. Labarca and Moreira showed in [12] that the map

(a, b) 7→ dimH{x ∈ S∞(2) : a ≥ σn(x) ≥ b for all n ≥ 0}

is continuous in both parameters a and b. The question is; can
we similarly to F 2(c, q) describe the intervals where the dimension
remains unchanged for this map?

3. In Figure 4 the graph of β 7→ dimH F (0.25, β) is given. What can
be said about this map, is it continuous or self-similar?
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19 List of Notation

x̃ decrement of the last symbol, 14
x̂ increment of the last symbol, 14

x∗ bit-wise inverse, 14
x′ real number inverse, 14
|x| length of a sequence, 14
|E| set cardinality, 14
[x] integer part,
[s] cylinder set,

s[a, b] subsequence, 14
E[a, b] set of subsequences, 14

Γ(q) Allouche’s and Cosnard’s unimodal set, 46
Γa(q) Allouche’s and Cosnard’s generalised set, 46

δq(x,y) distance, 13
µu self-similarity map, 68
φβ dimension function, 11, 21
φq dimension function, 12, 28, 45
A attractor set, 67

ak(s, β) the one-sided increasing accumulation sequence, 26
ak(s, q) the two-sided increasing accumulation sequence, 61
bk(s, β) the one-sided decreasing accumulation sequence, 26
bk(s, q) the two-sided decreasing accumulation sequence, 63
B(c, β) extremal β-value, 37

BAN Badly Approximable Numbers, 9
d(s, q) the limit under reflection, 51
d(x, β) expansion of x in base β, 35

dimH Y Hausdorff dimension, 17
e(c, q) the extremal map, 54

eq,i subdivision marker of the parameter space, 54
er

q,0 subdivision marker of the parameter space, 54
f(c, q) reflection function, 50
F (c, β) set of q-adically BAN , 21
F (c, q) set of q-adically BAN , 45
F 1(c, β) set of q-adically BAN , 11, 21
F 2(c, q) set of q-adically BAN , 11, 45
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F (c, q) set of q-adically BAN , 28, 45
Fβ(c) set of q-adically BAN , 35
gn,k(s) replacement and truncation, 55
htop(·) topological entropy, 18
I(c, q) dimension interval, 28, 82
Iβ(c) dimension interval, 37

IEM (q) set of infinite eq,i-minimal sequences, 86
IEO(c, β) set of infinite expansions of one, 39

IM (q) set of infinite minimal sequences, 28
ISB(q) set of infinite shift-bounded sequences, 54

ks eq,i-minimal prefix corrector, 55
ms length of eq,i-minimal prefix, 55

m(c, β) minimum point of dimension interval, 36
M(c, β) maximum point of dimension interval, 36

ns length of minimal prefix, 23
p(c, q) prefix-suffix reduction, 49
R(c) re-alphabetisation, 34, 79
Sβ a β-shift, 35

S(q) set of sequences on q symbols, 13
S∗(q) infinite sequences on q symbols, 13
S∞(q) finite sequences on q symbols, 13

t Thue-Morse sequence, 69
T (c) the Thue function, 74
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