3.6. The least squares problem.

\[f(x) = \sum_{k=1}^{n} r_k(x)^2 = \| r(x) \|^2, \quad r = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} \]

Special, but often used problem.

Linear case: \(r(x) = Ax - b \)

where \(A = m \square \), \(b = m \square \) - given and \(x \in \mathbb{R}^n \) is unknown.

- \(\exists x \in \mathbb{R}^n : Ax = b \Rightarrow \min_x f(x) = 0 \)

- \(\nexists x \in \mathbb{R}^n \Rightarrow \exists x \in \mathbb{R}^n : Ax \approx b \)

Solution:

\[f(x) = \| Ax - b \|^2 = \quad \]

\[= x^T A^T A x - 2 b^T A x + b^T b. \]

Quadratic function!

Stationary point: \(\nabla f = 0 \)

\[\nabla f(x) = 2 A^T A x - 2 A^T b = 0 \iff \]

\[\iff A^T A x = A^T b \quad - \text{normal equation (*)} \]

Lemma: \(x \) solves \(\min_x \| Ax - b \|^2 \Rightarrow \)

\[\iff \bar{x} \text{ is a solution to (*)}. \]

Proof: \(\implies \) see above.

\(\iff \bar{x} \) solves (*) \(\Rightarrow \bar{x} \) is stationary point:

Ex. 1.5:

\[f(x) = (x - \bar{x})^T A^T A (x - \bar{x}) + f(\bar{x}) = \]

\[= \| A(x - \bar{x}) \|^2 + f(\bar{x}) \geq f(\bar{x}) \quad \text{and equality when } x = \bar{x} \Rightarrow \bar{x} \text{ optimal} \]
Remark: if A^TA is invertible then
\[x = (A^TA)^{-1}A^Tb \quad \text{unique solution}. \]

A^+: pseudoinverse.

* if A^TA not invertible then
\[x = A^+b \quad \text{one of many solutions}. \]

Note: not $x = (A^TA)^+A^Tb$.

Geometrical interpretation of LS:
\[A\cdot x = \begin{bmatrix} \vec{a}_1 & \ldots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \sum_{k=1}^{n} \vec{a}_k \cdot x_k \]

linear combination of columns.

\[\min \| b - A\cdot x \|_2 \Rightarrow \]
\[\Rightarrow \text{shortest distance} = \]
\[\Rightarrow \text{orthogonal} \Rightarrow \]
\[A \cdot x_{\min} \perp A\cdot x, \quad \forall x \in \mathbb{R}^n. \]

(normal equation)

Nonlinear case:
\[f(x) = \sum_{i=1}^{m} r_i(x)^2. \]

Try Newton: calculate $\nabla f, H$:
\[\frac{\partial f}{\partial x_k} = \sum_{i=1}^{m} 2 r_i \frac{\partial r_i}{\partial x_k} = 2 \left[\frac{\partial r_i}{\partial x_k} \bigg|_{x_k} \right] r_i \]

Denote $J = \{ J_{ij} \} = \{ \frac{\partial r_i}{\partial x_j} \}$ - Jacobian

Then
\[\nabla f = 2 J^T r \]

Then
\[\frac{\partial^2 f}{\partial x_k \partial x_j} = 2 \sum_{i=1}^{m} \left[\frac{\partial r_i}{\partial x_j} \frac{\partial r_i}{\partial x_k} + r_i \frac{\partial^2 r_i}{\partial x_k \partial x_j} \right] \]

\[\Rightarrow H = 2 J^T J + 2 \sum_{i=1}^{m} r_i \cdot \nabla^2 r_i \approx \]

\[\approx 2 J^T J \]

\[x_{k+1} = x_k - (J^T J)^{-1} J^T r(x_k) \quad \text{Gauss-Newton} \]
Ch 9. Penalty and barrier functions

The problem: \(\min_{x \in S \subset \mathbb{R}^n} f(x) \)

We assumed that \(S = \mathbb{R}^n \).

It was crucial in all methods that one can move in any direction.

Example: \(\min (x^2 + x_2^2) \mid x_1 + x_2 \geq 1 \)

Starting at \((0, 2) \):

\(-\nabla f = [-4] \)

\(\text{Wrong!} \)

Remark: SD, Newton, CC, Conjugate Directions etc will never find the minimum when applied to \(f(x) \).

We need to pass information to the search direction about the constraints.

9.2. Penalty function method

\(\min_{x \in S \subset \mathbb{R}^n} f(x) \quad S = \{ x \in \mathbb{R}^n : g(x) \leq 0, h(x) = 0 \} \)

Here \(g(x) = \begin{bmatrix} g_1(x) \\ \vdots \\ g_m(x) \end{bmatrix}, h(x) = \begin{bmatrix} h_1(x) \\ \vdots \\ h_k(x) \end{bmatrix} \).

\(g(x) \leq 0 \implies \text{all } g_k(x) \leq 0 \).

In theory, it is easy to reduce any \(S \) to the case of the whole \(\mathbb{R}^n \).

\[F(x) = \begin{cases} f(x) & \text{if } x \in S \\ +\infty & \text{otherwise} \end{cases} \]

\(\Rightarrow \min_{x \in S} f(x) = \min_{x \in \mathbb{R}^n} F(x) \)

In practice, \(+\infty \) is replaced by something large.
For example, take
\[\alpha(x) = \begin{cases} 0 & \text{if } x \in S \\ >0 & \text{otherwise} \end{cases} \]
and build \[q(x) = f(x) + \mu \cdot \alpha(x) \Rightarrow \]
\[q(x) \approx F(x) \text{ for large } \mu > 0. \]

Typical choice of \(\alpha \):

* \(q_k(x) \leq 0 \):
 \[\alpha_k(x) = \max \{ 0, q_k(x) \} \]
 (alt. \(\alpha_k(x) = \max \{ 0, q_k(x) \}^2 \))

* \(h_j(x) = 0 \): \(\alpha_j(x) = h_j(x)^2 \)

Overall \(\alpha(x) \) for \(q(x) \leq 0 \), \(h(x) = 0 \):

\[\alpha(x) = \sum_{k=1}^{m} \left(\max \{ 0, q_k(x) \} \right)^2 + \sum_{j=1}^{p} h_j(x)^2 \]
Remark: to start with large μ is bad, (ill-conditioned problem). In practice, iterations start from small μ and then gradually increase it using the answers as new starting points.

Strategy: pick $\mu_1 < \mu_2 < \ldots < \mu_n \to +\infty$

$q_{\mu}(x) = f(x) + \mu \cdot \alpha(x)$

<table>
<thead>
<tr>
<th>Start</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution to min q_{μ}</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>

- Convergence analysis (Th. 1, p. 316)

$x_k \to \bar{x} \Rightarrow \bar{x}$ is the solution to $\min f(x), x \in S$

- Better to use Newton/quasi Newton/CG
- SD is sensitive to ill-conditioned problem.
- Each x_k is not feasible (outside S).
- Exterior approximations to \bar{x}.

9.3. Barrier function method

Only inequalities: $\min f(x) \mid q_j(x) \leq 0$

We take another approximation of $F(x) = \begin{cases} f(x) & \text{if } x \in S \\ +\infty & \text{otherwise} \end{cases}$

Take $\beta(x) = \begin{cases} \rightarrow +\infty & \text{if some } g_k(x) \to 0 \\ "+\infty" & \text{otherwise} \end{cases}$

[\star] "$+\infty$" is some very large number to prevent the line search to leave S

and build $q_\varepsilon(x) = f(x) + \varepsilon \cdot \beta(x) \Rightarrow$

$\Rightarrow q_\varepsilon(x) \approx F(x)$ for small $\varepsilon > 0$.
Typical choice of β:

- $\beta_k(x) = \begin{cases} \frac{-1}{g_k(x)} & \text{if } g_k(x) < 0 \\ +\infty & \text{otherwise} \end{cases}$

- $\beta_k(x) = \begin{cases} 0 & \text{if } g_k(x) \leq -1 \\ -\ln(-g_k(x)) - g_k(x) - 1 & \text{if } -1 < g_k(x) < 0 \\ +\infty & \text{otherwise} \end{cases}$

General $g(x) \leq 0$:

$\beta(x) = \sum_{k=1}^{m} \beta_k(x)$

Example (again) $\min(x_1^2 + x_2^2) \mid x_1 + x_2 \geq 1$

$q(x) = \begin{cases} x_1^2 + x_2^2 + \frac{\epsilon}{x_1 + x_2 - 1} & \text{if } x_1 + x_2 > 1 \\ 10^5 & \text{otherwise} \end{cases}$

(alt. realmax in MATLAB)

Remark: similar strategy as for penalty:

Pick not very small $\epsilon_1 > \epsilon_2 > \ldots > \epsilon_k \rightarrow 0^+$

$q_\epsilon(x) = f(x) + \epsilon \beta(x)$

<table>
<thead>
<tr>
<th>ϵ_1</th>
<th>ϵ_2</th>
<th>ϵ_3</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>start X_0</td>
<td>X_1</td>
<td>X_2</td>
<td>\ldots</td>
</tr>
<tr>
<td>solution X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

- Similar convergence analysis (Th. 2, p. 325)
- SD is no good here either.
- Line search must be used to stay in S.
- Each x_k is feasible.

Interior approximations to \bar{x}.

Example $f(x) = 1 - x^2$, $-1 \leq x \leq 1$