Course Program for Optimization 2012

(back to the course homepage)


 30/10 Introduction (Chapter 1). Line search (Chapter 2).
 31/10 2:1a,2,3,4ac,5,6 1:10b,2ae,3,4,5
   2/11 Multidimensional search: Steepest descent, Newton's method, modified Newton methods (3.1-3.4)

   6/11 Some matrix theory. (Appendix A). Conjugate directions. (3.5.1-3.5.2)
   7/11 1:13 A:1,2,4 3:1,3,7,8,9,12 1:11
   9/11 Methods using conjugate directions. The least squares problem. (3.5-3.7)

 13/11 Convex sets. (4.1-4.2) Farkas' theorem. Cones. (4.3-4.5)
 14/11 3:13,15,17,18,20 4:5,6,7,8,11,12
 16/11 Linear programming. (5.1-5.2)

 20/11 Linear programming. (5.2-5.4)
 21/11 4:17,19 5:6,7,8,13,14,15
 22/11
Seminar exercise
 23/11 Convex functions. (6.1-6.2)

 27/11 Optimization of convex functions. (6.3-6.4). Introduction to constrained optimization. (7.1-7.2)
 28/11 5:22 6:2,7,8,9,10,12,17,18,19
 29/11
Seminar exercise
 30/11 Constrained optimization, necessary conditions. (7.2-7.3)

  4/12 Constrained optimization; sufficient conditions. (7.3-7.4)
  5/12 7:1,6,7,8,10,11,12,14,16,18,23,29
  6/12
Seminar exercise
  7/11 More on constrained optimization. (7.4-7.6). Duality. (Chapter 8)

 11/12 Penalty and barrier functions. (Chapter 9).
 12/12 8:1,2,4,5   9:1,3
 13/12
Repetition
 14/12 Revision

 17/12
Examination in Sparta B-D, 08:00 - 13:00

Andrey Ghulchak