Course Program for Optimization 2011

(back to the course homepage)


24/10 Introduction (Chapter 1). Line search (Chapter 2).
25/10 2:1a,2,3,4ac,5,6 1:10b,2ae,3,4,5
26/10 Multidimensional search: Steepest descent, Newton's method, modified Newton methods (3.1-3.4)

31/10 Some matrix theory. (Appendix A). Conjugate directions. (3.5.1-3.5.2)
  1/11 1:13 A:1,2,4 3:1,3,7,8,9,12 1:11
  2/11 Methods using conjugate directions. The least squares problem. (3.5-3.7)

  7/11 Convex sets. (4.1-4.2) Farkas' theorem. Cones. (4.3-4.5)
  8/11 3:13,15,17,18,20 4:5,6,7,8,11,12
  9/11 Linear programming. (5.1-5.2)

14/11 Linear programming. (5.2-5.4)
15/11 4:17,19 5:6,7,8,13,14,15
16/11 Convex functions. (6.1-6.2)
18/11
Seminar exercise

21/11 Optimization of convex functions. (6.3-6.4). Introduction to constrained optimization. (7.1-7.2)
22/11 5:22 6:2,7,8,9,10,12,17,18,19
23/11 Constrained optimization, necessary conditions. (7.2-7.3)
25/11
Seminar exercise

28/11 Constrained optimization; sufficient conditions. (7.3-7.4)
29/11 7:1,6,7,8,10,11,12,14,16,18,23,29
30/11 More on constrained optimization. (7.4-7.6). Duality. (Chapter 8)
  2/12
Seminar exercise

  5/12 Penalty and barrier functions. (Chapter 9).
  6/12 8:1,2,4,5   9:1,3
  7/12 Revision
  9/12
Repetition

Andrey Ghulchak