Vi har sett att volymen (med tecken) av parallelepipeden med kanten \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) ges av

\[
V(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}).
\]

Def. Om \(A \) är en \(3 \times 3 \) matris med kolonnvektorer

\[
A_1 = \begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31}
\end{pmatrix} = a_{11} \mathbf{e}_1 + a_{21} \mathbf{e}_2 + a_{31} \mathbf{e}_3
\]

\[
A_2 = \begin{pmatrix}
 a_{12} \\
 a_{22} \\
 a_{32}
\end{pmatrix} = a_{12} \mathbf{e}_1 + a_{22} \mathbf{e}_2 + a_{32} \mathbf{e}_3
\]

\[
A_3 = \begin{pmatrix}
 a_{13} \\
 a_{23} \\
 a_{33}
\end{pmatrix} = a_{13} \mathbf{e}_1 + a_{23} \mathbf{e}_2 + a_{33} \mathbf{e}_3
\]

givna i basen \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \) definierar vi determinanten som talet

\[
def(A) = \frac{V(A_1, A_2, A_3)}{V(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)}.
\]

Beteckningar: \[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{pmatrix}
\], \(\det(A) \) eller \(\det(A_1, A_2, A_3) \)
Anmärkningar:
* Talet \(V(A_1, A_2, A_3) \) beror på vilken bas vi har valt men det(A) beror bara på koefficienterna i A.
* Om \(\bar{e}_1 \bar{e}_2 \bar{e}_3 \) är en HON-bas är \(V(\bar{e}_1, \bar{e}_2, \bar{e}_3) = 1 \) och det(A) = \(V(A_1, A_2, A_3) = A_1 \cdot (A_2 \times A_3) \).

Sats 3 (sid 200):
(a) \(\det(A_1 + A'_1, A_2, A_3) = \det(A_1, A_2, A_3) + \det(A'_1, A_2, A_3) \)
(b) \(\det(AA_1, A_2, A_3) = \lambda \det(A_1, A_2, A_3) \)
(c) \(\det(A_1, A_2, A_3) = -\det(A_1, A_3, A_2) \)
(d) \(\det(A_1, A_2, A_3) = 0 \)
(e) \(\det(A_1 + cA_2, A_2, A_3) = \det(A_1, A_2, A_3) \)
(f) \(\det(I) = 1 \).

Bevis: Förr enkelhets skull utar vi att \(V(\bar{e}_1, \bar{e}_2, \bar{e}_3) = 1 \)
(a) \((A_1 + A'_1) \cdot (A_2 \times A_3) = A_1 \cdot (A_2 \times A_3) + A'_1 \cdot (A_2 \times A_3) \)
(b) \((\lambda A_1) \cdot (A_2 \times A_3) = \lambda (A_1 \cdot (A_2 \times A_3)) \)
(c) \(A_1 \cdot (A_2 \times A_3) = A_1 \cdot (-A_3 \times A_2) = -A_1 \cdot (A_3 \times A_2) \)
(d) \(A_1 \times A_3 \perp A_1 \Rightarrow A_1 \cdot (A_1 \times A_3) = 0 \)
(e) \((a) \land (b) \lor (c) \Rightarrow (e) \)
(f) \(\bar{e}_1 \cdot (\bar{e}_2 \times \bar{e}_3) = \bar{e}_1 \cdot \bar{e}_1 = 1 \)
Anmärkning:
(c) gäller oavsett vilka två kolonner som byter plats.
(d) ________11________ är lika.

Ex1 Om A är 3x3 och det A = 1 vad blir det(2A)?

Lösning: det \((2A_1, 2A_2, 2A_3)\) = 2 \(\text{det}(A_1, 2A_2, 2A_3)\) =
\(2^2 \text{det}(A_1, A_2, 2A_3)\) = \(2^3 \text{det}(A)\) = 8.
(Dubbilar vi längden på kanterna blir volymen 8 gånger större)

Determinanten ger oss ett sätt att testa linjärt beroende.

Sats: detA \(\neq 0 \iff A_1, A_2, A_3\) är linjärt oberoende

Bevis: det A \(\neq 0 \iff V(A_1, A_2, A_3) \neq 0 \iff A_1, A_2, A_3\) ligger inte i ett plan \(\iff A_1, A_2, A_3\) linj.-ober.

Följande sats: det A \(\neq 0 \iff A\) är inverterbar

Beräkning av 3x3 determinant kan göras med
Sarrus regel:

\[
\begin{array}{c}
+ & + & - \\
\hline
\hat{a}_{11} & a_{12} & a_{13} \\
\hat{a}_{21} & a_{22} & a_{23} \\
\hat{a}_{31} & a_{32} & a_{33}
\end{array}
\]

\[
\text{det}(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}
\]

Utrycket beror ej på basen
Ex 2. Hva (1,2,1), (2,1,-3), (-1,1,4)

Lösning: \[
\begin{vmatrix}
1 & 2 & -1 \\
2 & 1 & 1 \\
1 & -3 & 4 \\
\end{vmatrix}
= \begin{vmatrix}
1 & 2 & 4 \\
2 & 1 & 1 \\
1 & -3 & 4 \\
\end{vmatrix}
= 1 \cdot 1 \cdot 4 + 2 \cdot 1 \cdot (-3) - 1 \cdot 1 \cdot (-3) - 2 \cdot 2 \cdot 4 - (-1) \cdot 1 \cdot 1
= 4 + 2 + 6 + 3 - 16 + 1 = 0
\]
Svar: Nej.

Determinant formeln kan bevisas genom att
stoppe in
\[
A_1 = a_{11} \bar{e}_1 + a_{21} \bar{e}_2 + a_{31} \bar{e}_3
\]
\[
A_2 = a_{12} \bar{e}_1 + a_{22} \bar{e}_2 + a_{32} \bar{e}_3
\]
\[
A_3 = a_{13} \bar{e}_1 + a_{23} \bar{e}_2 + a_{33} \bar{e}_3
\]
i formeln \(A_1 \circ (A_2 \times A_3)\) och använda att
\[
\bar{e}_1 \times \bar{e}_1 = \bar{e}_2 \times \bar{e}_2 = \bar{e}_3 \times \bar{e}_3 = 0.
\]
\[
A_2 \times A_3 = (a_{12} a_{23} - a_{13} a_{22}) \bar{e}_1 \times \bar{e}_2
\]
\[
+ (a_{13} a_{32} - a_{12} a_{33}) \bar{e}_2 \times \bar{e}_1
\]
\[
+ (a_{22} a_{33} - a_{23} a_{32}) \bar{e}_2 \times \bar{e}_3
\]
Eftersom \(\bar{e}_i \circ (\bar{e}_j \times \bar{e}_i) = \bar{e}_i \circ (\bar{e}_i \times \bar{e}_j) = 0\)
bli r...
\[A_1 \cdot (A_2 \times A_3) = (a_{12}a_{21}a_{3} - a_{12}a_{21}a_{31}) \overrightarrow{e_3} \cdot (\overrightarrow{e_1} \times \overrightarrow{e_2}) = \sqrt{(\overrightarrow{e_1} \overrightarrow{e_2} \overrightarrow{e_3})} \]

\[+ (a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33}) \overrightarrow{e_2} \cdot (\overrightarrow{e_3} \times \overrightarrow{e_1}) = \sqrt{(\overrightarrow{e_1} \overrightarrow{e_2} \overrightarrow{e_3})} \]

\[+ (a_{11}a_{22}a_{33} - a_{12}a_{23}a_{32}) \overrightarrow{e_1} \cdot (\overrightarrow{e_2} \times \overrightarrow{e_3}) = \sqrt{(\overrightarrow{e_1} \overrightarrow{e_2} \overrightarrow{e_3})} \]

2x2 determinanter:

På samma sätt som volymen definierar vi arean med tecken

\[V(\overrightarrow{u}, \overrightarrow{v}) = \begin{cases} W(\overrightarrow{u}, \overrightarrow{v}) & \text{om } \overrightarrow{u}, \overrightarrow{v} \text{ pos. orienterade} \\ -W(\overrightarrow{u}, \overrightarrow{v}) & \text{om } \overrightarrow{u}, \overrightarrow{v} \text{ neg. orienterade} \end{cases} \]

Arean som kolonnvektornas \((a_{11}, a_{21})\) och \((a_{12}, a_{22})\) ger blir samma som volymen som \((a_{11}, a_{21}, 0), (a_{12}, a_{22}, 0), (0, 0, 1)\) ger.

\[
\begin{vmatrix}
 a_{11} & a_{12} & 0 \\
 a_{21} & a_{22} & 0 \\
 0 & 0 & 1 \\
\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.
\]
Minnesregel: \[
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.
\]

Ex 3: Bestäm arean av triangeln med hörnpunkterna \((1,2), (2,4)\) och \((3,1)\).

Lösning: Sida-vektorer blir
\[
\vec{v} = (3,1) - (1,2) = (2,-1) \\
\vec{u} = (2,4) - (1,2) = (1,2)
\]

\[
A = \begin{vmatrix}
2 & 1 \\
-1 & 2 \\
2
\end{vmatrix} = \left| \frac{2 \cdot 2 - (-1) \cdot 1}{2} \right| = \frac{5}{2}
\]

Ex 4: Bestäm ekvationen för planet som innehåller vektorerna \(\vec{v}_1 = (1,1,1), \vec{v}_2 = (2,3,-1)\) och punkten \(P_0 = (0,1,2)\).

Lösning: Om \(P:(x,y,z)\) ligger i planet är \(P_0P, \vec{v}_1, \vec{v}_2\) linjärt beroende.

\[
0 = \begin{vmatrix}
x-0 & 1 & 3 \\
y-1 & 1 & 3 \\
z-2 & 1 & -1
\end{vmatrix} =
\]
\[
\begin{vmatrix}
-1 & 3 & 1 \\
2 & -1 & -3 \\
0 & 1 & -1
\end{vmatrix} = (-x) + 3(z-2) + 3(y-1) - 3x + (y-1) - 3(z-2) = -4x - 4y - 4 \iff x - y + 1 = 0.
\]

Sats 2 (sid 199): \(\det A = \det A^T \)

Bevis för 2x2 fallet:
\[
\begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} = a_{11}a_{22} - a_{21}a_{12}.
\]

Ex 5. Är vektorerna \((1,2,-1), (2,1,1)\) och \((1,-3,4)\) linjärt beroende?

Svar: Ja eftersom determinanten i Ex 2 blev 0.

Sats 1 (sid 197, Volymsatsen): Om \(\vec{e}_1, \vec{e}_2, \vec{e}_3\) är godtyckliga vektorer (behöver ej vara bas) och
\[
A_1 = a_{11} \vec{e}_1 + a_{12} \vec{e}_2 + a_{13} \vec{e}_3
\]
\[
A_2 = a_{21} \vec{e}_1 + a_{22} \vec{e}_2 + a_{23} \vec{e}_3
\]
\[
A_3 = a_{31} \vec{e}_1 + a_{32} \vec{e}_2 + a_{33} \vec{e}_3
\]

Så gäller
\[
V(A_1, A_2, A_3) = \det (A) V(\vec{e}_1, \vec{e}_2, \vec{e}_3)
\]
Sats 17 (sid 216): Om \(F \) är en linj, avb med avb. matris \(M \) så är

\[
\text{V}(F(\bar{u}),F(\bar{v})) = \text{det}(M) \text{V}(\bar{u},\bar{v}).
\]

(och samma sak för \(\mathbb{R}^3 \).)

Med andra ord: Om man transformersar parallelogrammet med sidorna \(\bar{u}, \bar{v} \) så förändras areaen med en faktor \(\text{det}(M) \).
Bevis: \[F(\vec{u}) = M \vec{u} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = u_1 M_1 + u_2 M_2 \]

\[= M_1 = M_2 \]

\[F(\vec{v}) = v_1 M_1 + v_2 M_2. \]

Enligt volymseteorem är då

\[V(F(\vec{u}), F(\vec{v})) = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} V(M_1, M_2) \]

\[= \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} \det(M) V(\vec{e}_1, \vec{e}_2) \]

\[= \det(M) V(\vec{u}, \vec{v}) \]

Ex6 En linjär avbildning med matris \(A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \)

avbildar \(\vec{v}_1 = (1,2) \) och \(\vec{v}_2 = (3,1) \) på \(F(\vec{v}_1) \) och \(F(\vec{v}_2) \). Vad blir arean av parallelogrammet med sidorna \(F(\vec{v}_1) \) och \(F(\vec{v}_2) \)?

Lösning: Arean innan avbildning

\[\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = |1 \cdot 1 - 3 \cdot 2| = 5 \]

Area efter avbildningen

\[|\det A| \cdot 5 = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} \cdot 5 = 50 \]
Alternative Lemma:

\[F(\overline{v}_1) = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \end{pmatrix} \]
\[F(\overline{v}_2) = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 13 \\ 9 \end{pmatrix} \]

Area by

\[
\left| \begin{array}{cc} 6 & 13 \\ 8 & 9 \end{array} \right| = |54 - 104| = 50.
\]