
Computer Vision Lecture 9 2019-02-19

Lecture 9: Local Optimization

1 The Maximal Likelihood Estimator

In the previous lecture we derived the maximum likelihood estimator for our class of projection problems. If
xij = (x1ij , x

2
ij) is the projection in regular Cartesian coordinates of the 3D-point Xj in camera Pi then the

model parameters that make the measurements xij most likely is found by minimizing

n∑
i=1

m∑
j=1

∥∥∥∥(x1ij − P 1
i Xj

P 3
i Xj

, x2ij −
P 2
i Xj

P 3
i Xj

)∥∥∥∥2 . (1)

This problem is however difficult to solve since there is in general no closed form solution. In practice we are
limited to locally improving the objective function from some suitable selected starting point. The starting point is
typically generated using algebraic solvers like the ones we have presented previously in the course. In this lecture
we will present some simple methods for local optimization.

2 Background

We first recall some basic concepts from optimization.

Definition 1. A point v is called a stationary point of f if

∇f(v) = 0. (2)

Definition 2. A point v is called a local minimizer of f if

f(v) ≤ f(s) (3)

for all s in a neighborhood around v. (More technically, for all s such that ‖v − s‖ ≤ δ for some δ > 0).

Theorem 1. Any local minimizer of a differentiable function is also a stationary point.

Definition 3. A matrix M is positive definite (M � 0) if vTMv > 0 for all v 6= 0. It is called positive semi definite
(M � 0) if vTMv ≥ 0 for all v.

Theorem 2. If v is a stationary point of f (∇f(v) = 0) and the hessian of f is positive definite at t (∇2f(v) � 0)
then v is also a local minima of f .

3 Linear Least Squares

Minimizing (1) is an example of a non-linear least squares problem. In this section we will show how linear least
squares problems can be minimized. In in the following sections we will use this approach to tackle the more
difficult non-linear versions.

In the linear least squares problem we want to fit a set of linear functions Aiv to a set of measurements bi, i =
1, .., n. Here ATi is a vector of the same size as v representing a linear function of v. The least squares problem is
now

min
v

n∑
i=1

‖Aiv − bi‖2. (4)

1

Computer Vision Lecture 9 2019-02-19

If we concatenate all the Ai into one matrix A and all the bi into one vector b we can write the problem in matrix
form as

min
v
‖Av − b‖2. (5)

Expanding the norm gives

‖Av − b‖2 = (Av − b)T (Av − b) = vTATAv − 2bTAv + bT b︸ ︷︷ ︸
=f(v)

. (6)

To find the minimum of this function we compute its stationary points.

∇f(v) = 0⇔ 2ATAv − 2AT b = 0⇔ ATAv = AT b. (7)

These equations are called the normal equations, and assuming thatATA is invertible they give the stationary point

v = (ATA)−1AT b. (8)

To see that this is a local minimizer we look at the Hessian of f

∇2f(v) = ATA. (9)

This matrix is positive semi definite since

vTATAv = ‖Av‖2 ≥ 0. (10)

Furthermore, it has to be positive definite since if there is v 6= 0 such that ‖Av‖ = 0 then, by multiplying withAT ,
we see that ATAv = 0 which would imply that ATA is not invertible (which we have assumed above). Therefore,
(8) is a local minimum.

It is in fact also a global minimum which can be seen by changing coordinates. Let us call the stationary point s
and let v = δ + s. We then get

‖A(δ + s) + b‖2 = (δ + s)TATA(δ + s)− 2bTA(δ + s) + bT b. (11)

Since s is the stationary point it fulfills (7) and therefore the right hand side can be re-written as

(δ + s)TATA(δ + s)− 2sTATA(δ + s) + bT b = δTATAδ︸ ︷︷ ︸
depends on δ

− sTATAs+ bT b︸ ︷︷ ︸
const.

. (12)

The result of this simplification is a term which depends on δ and one that is constant. Since ATA is positive
definite any choice of δ that is not zero will result in the first term being positive. Therefore the optimal choice is
δ = 0 and thereby v = s.

4 Non-Linear Least Squares

Next we turn to the problem of solving the non-linear least squares formulation. In the general formulation we
have a set of residuals ri(v) which we want to minimize in a least squares sense

min
v

∑
i

ri(v)
2. (13)

If we stack all the residuals ri(v) in a vector r(v) then we can write the problem

min
v
‖r(v)‖2. (14)

In this section we will present three simple procedures that from a starting point improves the objective value by
locally searching for better values.

2

Computer Vision Lecture 9 2019-02-19

4.1 Steepest Descent

The perhaps simplest possible strategy is the steepest descent search. Given a starting point v0 this method finds
the direction in which the function decreases most rapidly, and takes a step in this direction. For the function f(v)
the directional derivatives at a point v0 are given by

f ′d(v0) = ∇f(v0)T d. (15)

Here d is a direction (vector of unit length). To find the d for which f ′d(v0) is maximally negative we should select
d = −∇f(v0)/|∇f(v0)| since this choice would give

f ′d = −∇f(v0)T
∇f(v0)
|∇f(v0)|

= −|∇f(v0)|. (16)

For each term ri(v)
2 of the function f(v) = ‖r(v)‖2 = r1(v)

2 + r2(v)
2 + ...+ rn(v)

2 we have

∇
(
ri(v)

2
)
= 2ri(v)∇ri(v), (17)

and therefore
∇f(v) = 2

∑
i

ri(v)∇ri(v). (18)

Once the descent direction d has been computed the algorithm picks a new point v1 by searching along this
direction, that is v1 = v0 + λd, where lambda is selected such that f(v1) < f(v0). It is always possible to find
such a λ (buy choosing λ small) unless∇f(v0) = 0, that is v0 is already a stationary point.

Then the whole process is repeated for the point v1 and so on.

4.2 Gauss-Newton

While very cheap to compute the gradient does not contain any information about step-length. Therefore in the
steepest descent approach we are forced to select a suitable λ by other means.

An alternative approach is the Gauss-Newton method. In this method we first approximate the residuals ri(v)
with linear functions and then solve the resulting approximation using the approach from Section 3. The Taylor
approximation of r(v) at v0 is

r(v) =


r1(v)
r2(v)

...
rn(v)

 ≈


r1(v0)
r2(v0)

...
rn(v0)


︸ ︷︷ ︸

r(v0)

+


∇r1(v0)T
∇r2(v0)T

...
∇rn(v0)T


︸ ︷︷ ︸

J(v0)

(v − v0)︸ ︷︷ ︸
d

(19)

The matrix J(v0) is the Jacobian of the vector r. Its rows contain the gradients of each entry ri in r. The
approximating linear least squares problem is therefore

min
d
‖r(v0) + J(v0)d‖2, (20)

which according to (8) has the solution

d = −(J(v0)TJ(v0))−1J(v0)T r(v0). (21)

The Gauss-Newton update is now v1 = v0 + d.

Remark 1. Note that with the notation in this section the steepest descent direction can (if we ignore the normal-
ization) be written

d = −J(v0)T r(v0). (22)

3

Computer Vision Lecture 9 2019-02-19

4.3 Levenberg-Marquardt

While convergence of the Gauss-Newton method is very rapid close to the minimum it can be unstable at points
not sufficiently close to the minimum. The reason is that the approach may generate large steps even though the
approximation is only valid in a local neighborhood around v0. Therefore we add a penalty for large steps and solve

min
d
‖r(v0) + J(v0)d‖2 + λ‖d‖2. (23)

To find the minimum of this problem we can again compute the stationary point. Expanding the function gives

‖r(v0) + J(v0)d‖2 + λ‖d‖2 = dT
(
J(v0)

TJ(v0) + λI
)
d+ 2r(v0)

TJ(v0)d+ r(v0)
T r(v0). (24)

Differentiating with respect to d gives

2
(
J(v0)

TJ(v0) + λI
)
d+ 2J(v0)

T r(v0) = 0, (25)

and therefore
d = −

(
J(v0)

TJ(v0) + λI
)−1

J(v0)
T r(v0). (26)

This approach is called the Levenberg-Marquardt update and is often much more stable than the original Gauss-
Newton formulation. If λ is selected large enough the update v1 = v0 + d is guaranteed to give a better objective
value. On the other hand for a very large λ (26) is almost the same as (22) (multiplied with 1/λ). A common
strategy is to start with a large λ and gradually reducing it to increase convergence speed when approaching the
minimum value.

4.4 Bundle Adjustment

We now return to the structure from motion problem. We will consider the calibrated version, that is, we are
assuming that the image points xij have already been normalized and that we are searching for camera matrices of

the form Pi = [Ri ti] and scene points or the form Xj =

[
Xj

1

]
. In Computer Vision literature this problem

is often called bundle adjustment since the bundle of viewing rays are locally adjusted to reduce the reprojection
errors. The objective function (1) can then be written

n∑
i=1

m∑
j=1

∥∥∥∥(x1ij − R1
iXj + t1i

R3
iXj + t3i

, x2ij −
R2
iXj + t2i

R3
iXj + t3i

)∥∥∥∥2 , (27)

where R1
i , R

2
i , R

3
i are the rows of the rotation Ri and t1i , t

2
i , t

3
i are the entries of the translation ti. Note that we

have assumed in (27) that all points are visible in all cameras. However, this is no restriction. If for example, point
2 is not visible in camera 3 then we simply remove the term (i, j) = (3, 2) from the sum.

To be able to apply the Gauss-Newton method we need to linearize the expressions of the type

R1X + t1

R3X + t3︸ ︷︷ ︸
=f1

and
R2X + t2

R3X + t3︸ ︷︷ ︸
=f2

. (28)

(For ease of notation we drop the indexes i, j for now.) There are two difficulties with this that we need to handle:
First, the functions are nonlinear since they contain both fractions and quadratic terms. Second, the rotation R
depends non-linearely on a set of parameters.

One way to parametrize a rotation is through the exponential map

exp(A) =

∞∑
k=0

1

k!
Ak = I +A+

1

2
A2 +

1

6
A3 + ... (29)

4

Computer Vision Lecture 9 2019-02-19

If R0 is our current rotation estimate, then any other rotation R can be written as R0 multiplied with a the
exponential map of a skew symmetric matrix

R = exp

 0 −a1 −a2
a1 0 −a3
a2 a3 0

R0. (30)

Since we are interested in linearizing (28) we need only consider the first order terms of (29). If we let

S1 =

0 −1 0
1 0 0
0 0 0

 , S2 =

0 0 −1
0 0 0
1 0 0

 and S3 =

0 0 0
0 0 −1
0 1 0

 , (31)

then close to R0 we have
R ≈ (I + (a1S1 + a2S2 + a3S3))R0. (32)

This gives us a linear local parametrization of the rotation in terms of the variables a1, a2, a3. To determine the
linearization of (28) we need to compute derivatives with respect to all the variables a1, a2, a3, t1, t2, t3, X1, X2

and X3 in the current parameter estimates R0, t0, X0. This is straight forward (although tedious) and we only give
a few of the derivatives here:

∂f1
∂a1

=
S1
1R0X0

R3
0X0 + t30

− R1
0X0 + t10

(R3
0X0 + t30)

2
S3
1R0X0 (33)

∂f1
∂X1

0

=
R11

0

R3
0X0 + t30

− R1
0X0 + t10

(R3
0X0 + t30)

2
R31

0 (34)

∂f1
∂t1

=
1

R3
0X0 + t30

(35)

∂f1
∂t2

= 0 (36)

∂f1
∂t3

= − R1
0X0 + t10

(R3
0X0 + t30)

2
, (37)

where Si1 is the i’th row of S1, Ri,j0 is element (i, j) in R0. Using these (and the rest of the) derivatives we can now
form the Jacobian J(v0) in (19). The entries of r(v0) is obtained by computing the residual values at the current
parameter estimate. Note that v0 contain the parameter values of a1, a2, a3, t1, t2, t3, X1, X2 and X3 for all the
cameras and all the points of the problem. Thus if there are n cameras, m scene points and all the points are visible
in all the cameras then v0 is of size (6n+ 3m)× 1, r(v0) is mn× 1 and J(v0) is (6n+ 3m)×mn.

Since the reconstruction is only uniquely determined up to an unknown similarity transformation we can reduce
the number of variables slightly. For example we can assume that the first camera is [I 0]. This fixes six of the
seven degrees of freedom of the similarity transformation. To also fix the scale we can for example select the first
coordinate of the first point.

5

	The Maximal Likelihood Estimator
	Background
	Linear Least Squares
	Non-Linear Least Squares
	Steepest Descent
	Gauss-Newton
	Levenberg-Marquardt
	Bundle Adjustment

