Programme for lectures and exercise classes in Optimisation, 2008

(back to the course homepage)


1/9 Introduction (Chapter 1). Line search (Chapter 2).
2/9 2:1,2,3(5 iterations only),4ac,5 1:10b,2ae,3,4,5
3/9 Multidimensional search: Steepest descent, Newton's method, modified Newton methods (3.1-3.4)

8/9 Some matrix theory. (Appendix A). Conjugate directions. (3.5.1-3.5.2)
9/9 1:13 A:1,2,5 3:1,3,7,8,9,11 1:11
10/9 Methods using conjugate directions. The least squares problem. (3.5-3.7)

15/9 Convex sets. (4.1-4.2) Farkas' theorem. Cones. (4.3-4.5)
16/9 3:13,15,17,18,20 4:5,6,7,8,11,12
17/9 Linear programming. (5.1-5.2)

22/9 Linear programming. (5.2-5.4)
23/9 4:17,19 5:6,7,8,12,13,14
24/9 Convex functions. (6.1-6.2)

29/9 Optimisation of convex functions. (6.3-6.4). Introduction to constrained optimisation. (7.1-7.2)
30/9 5:15 6:2,7,8,9,10,12,17,18,19
1/10 Constrained optimisation, necessary conditions. (7.2-7.3)

6/10 Constrained optimisation; sufficient conditions. (7.3-7.4)
7/10 7:3,6,7,8,10,11,12,14,16,18,24,26
8/10 More on constrained optimisation. (7.4-7.6). Duality. (Chapter 8)

13/10 Penalty and barrier functions. (Chapter 9).
14/10 8:1,2,4,5   9:1,3
15/10 Revision

Anders Holst