Two norms (\(\| x \|\) and \(\|\| x \|\|\), say) on a vector space are equivalent if there are constants \(C > c > 0\) such that

\[c\| x \| \leq \|\| x \|\| \leq C\| x \|. \]

This implies that a sequence is convergent wrt (with respect to) the first one iff (if and only if) it is convergent wrt the second one, since

Later we will see that if \(\dim V < \infty\), then all norms on \(V\) are equivalent. However: If

\[f_n(x) = \begin{cases}
1 - nx, & \text{om } x \leq 1/n, \\
0, & \text{om } x > 1/n.
\end{cases} \]

it is easily seen that \(\| f_n - 0 \|_1 \to 0\) but \(\| f_n - 0 \|_{\infty} = 1\), and thus these norms on \(C[0, 1]\) are not equivalent.
Open and closed sets

Many notions from \mathbb{R}^3 have natural generalizations:

Let V be a normed space.

Open ball: $B(a, r) = \{x \in V : \|x - a\| < r\}$.

We say that $O \subset V$ is **open** if, for every $x \in O$, there is a $\epsilon = \epsilon(x) > 0$ such that O contains the ball $B(x, \epsilon)$.

We say that $M \subset V$ is **closed** if $\mathbb{C}M = V \setminus M$ is open.

Example S: Let $V = C[0, 1]$ with the supremum norm, $\|f\|_{\infty}$. Then the subset

$$M = \{f \in V : \int_0^1 f(t) \, dt = 0\}$$

is closed, since ...

In the same manner the definitions of **inner point**, **boundary point**, **boundary** etc carry over.
Let $M \subset V$. A point $x \in V$ is said to be a point of accumulation (hopningspunkt) for M if there is a sequence in $M \setminus \{x\}$ which converges to x.

Theorem 1.5 $M \subset V$ is closed if and only if M contains all its points of accumulation. The closed hull (slutna höljet), \overline{M}, of $M \subset V$ is the union of M and the set of all its points of accumulation. It is the smallest closed set which contains S.
Def Let V and W be normed spaces. A mapping (funktion) $F : V \rightarrow W$ is said to be continuous if

$$x_m \rightarrow x \implies F(x_m) \rightarrow F(x).$$

If $O \subset W$ and $F : V \rightarrow W$ we set

$$F^{-1}(O) = \{x \in V : F(x) \in O\}.$$

Theorem 1.11 The mapping $F : V \rightarrow W$ is continuous if and only if

$$O \subset W \text{ öppen } \implies F^{-1}(O) \text{ öppen.}$$

Example: Let V be as in the example above. Then

$$U = \{f \in V : \left| \int_0^1 f(t) \, dt \right| < 1/3\}$$

is open.
If $S \subset T \subset V$ is such that $T \subset \overline{S}$ we say that S is **dense (tät)** in T. This means (Theorem 4.49) that, for any $x \in T$, there exists a sequence in S which converges to x, i.e. any element of T may be approximated arbitrarily (godtyckligt) well by elements in S.

Example \mathbb{Q} is dense in \mathbb{R}. The polynomials are dense in $C[a, b]$ (Weierstrass’ approximation theorem, SSp A.3). The set $C^\infty[0, 1]$ is dense in $C[0, 1]$, with the supremum norm, as now shall see (Appendix A.4).
Regularization

1. Extend \(f \) to obtain a function \(\tilde{f} \in C_0(\mathbb{R}) \).

2. Set

\[
\chi(t) = \begin{cases}
 e^{-1/t} & t > 0 \\
 0 & t \leq 0
\end{cases}
\]

Then the function \(\chi \in C^\infty(\mathbb{R}) \) and \(\psi(t) = \chi(1 + t)\chi(1 - t) \in C_0^\infty(\mathbb{R}) \setminus \{0\} \).

3. Set \(\phi(t) = \frac{1}{C} \psi(t) \), where \(C = \int \psi(t) \, dt \) and \(\phi_n(t) = n\phi(nt) \). Then

(a) \(\phi_n(t) \geq 0 \) and \(\int \phi_n(t) \, dt = 1 \).

(b) \(\phi_n(t) = 0 \) if \(|t| \geq 1/n \).

4. Set \(\tilde{f}_n(t) = \tilde{f} * \phi_n(t) \). Then

\[
\sup_{t \in [0,1]} |\tilde{f}(t) - \tilde{f}_n(t)| \rightarrow 0, \quad n \rightarrow \infty,
\]

and \(\tilde{f}_n \in C^\infty \).

18