Verksamhet under hösten 1999
Sällskapet håller tre möten under hösten: tisdagen
den 26 oktober,
tisdagen 16 november samt ordinarie årsmöte tisdagen den 14
december.
Mötena börjar klockan 18.30 i sal C i Matematikhuset. Alla,
även
icke-medlemmar, är varmt välkomna! Före mötena,
från klockan 18.15,
serveras gratis förfriskningar. Efter varje möte inbjuds alla
till en
eftersits med mat och dryck till självkostnadspris.
Den 26 oktober håller Amiran Ambroladze, LTH,
föredraget
General orthogonal polynomials
The lecture is concerned with the asymptotic behaviour
and zero distribution of general orthogonal polynomials
(all definitions will be given). We will give a tutorial
survey of the main results in this area and discuss some
open problems. As an example, we give here one of the open
problems: It is easy to prove that if the support of a
measure belongs to the interval [-1,1], then the zeros
of the corresponding orthogonal polynomials also belong to
this interval. Now let us assume that the interval [-1/2, 1/2]
has no intersection with the support of the measure. Is it true
that there exists an infinite subsequence of the orthogonal
polynomials which have no zeros in the interval [-1/2, 1/2]?
(For the full sequence of the orthogonal polynomials the
assertion is not true: If we take a measure symmetric about
the origin, then the zeros of the corresponding orthogonal
polynomials are also symmetric, which, in particular, means
that the odd polynomials have a zero at the origin.)
Den 16 november håller Carsten Thomassen, DTU Lyngby,
föredraget
Patterns and map colourings on surfaces
Two of the best known results on maps or graphs on the sphere are the
characterization of the regular polyhedra (the tetrahedron, the cube,
the
octahedron, the icosahedron, and the dodecahedron) and the 4-colour
theorem. The former is easy, the latter is complicated. Both results
have
analogues for other surfaces. For example, every map on the torus can
be
coloured in 7 colours and not necessarily in 6 colours. Inspired by
Kempe's
incomplete proof of the 4-colour conjecture, P.J.Heawood gave in 1890 a
formula for the smallest number of colours needed to colour any map on
a
fixed surface (other than the sphere). Although Heawood's claim was
correct
it took about 80 years before a proof was completed (By Ringel and
Youngs).
In this talk we discuss the regular tilings of higer surfaces. Only the
torus and the Klein bottle have infinitely many, and we describe them
completely with only finitely many exceptions. Also, there is a
5-colour
theorem for each fixed surface S in the following sense: There is a
finite
set of (forbidden) maps on S such that any map on S can be 5-coloured
if
and only if it does not contain any of the forbidden maps. The list of
forbidden maps is known only for the sphere (where it is empty), the
projective plane (where there is only one forbidden map) and for the
torus
(where there are four forbidden maps). There is no 4-colour theorem of
this
type, except for one surface: the sphere.
Den 14 december så följer vi upp succén från
våren, då Lars Gårdings prisbelönta
dialog Matematiken, Livet och Döden
framfördes, genom att presentera akt 2
Hos Djävulen
I denna episod träffar John von Neumann
några intressanta personer, t.ex. så diskuteras teologi med
Augustinus.
Bland skådespelarna finner vi bl.a. Magnus Fontes som
Djävulen och Per-Anders
Ivert som John von Neumann.