Verksamhet under hösten 1996
Sällskapet höll tre möten under hösten 1996:
tisdagen den 17 september, tisdagen den 22 oktober
samt ordinarie höstmöte tisdagen den 3 december.
Mötena börjar klockan 18.30 i sal C i Matematikhuset.
Alla, även icke-medlemmar, är varmt välkomna!
Före mötena, från klockan 18.15, serveras gratis
förfriskningar.
Efter varje möte inbjuds alla till en eftersits
med mat och dryck till självkostnadspris.
Den 17 september håller Victor
Ufnarovski föredraget
Gröbner Basis and its application
Start your favorite computer algebra program and try to solve the
nonlinear system of the polynomial equations. The efficiency of your
program mostly depends on the efficiency of the Gröbner Basis
calculations...
The shortest proof of the Poincare-Birkhoff-Witt theorem is to find the
Gröbner Basis...
In the Mumbo-Jumbo language there are only three letters $a,b,c$ in the
alphabet and every word $f$ may have one or several synonyms $g$ (we
write this as $f=g.$) It is known that $$ab=c , bc=a, ca=b.$$
According the law if $f=g$ then $fh=gh$ and $hf=hg$ for arbitrary word
$h.$ For example, $aa=abc=cc.$ How many different words exists in
Mumbo-Jumbo? Is $ab=ba?$
To solve this it is sufficient to find the Gröbner Basis...
The aim of the talk is to explain how to find and use the Gröbner
Basis.
Den 22 oktober håller Bodil Branner
föredraget
On complex iteration - universality of the Mandelbrot set
Short abstract:
In this talk we discuss properties of dynamical systems defined through
iteration of a complex analytic map, such as a polynomial or a rational
function. The Mandelbrot set $M$ is a dynamically defined subset of the
one parameter family of quadratic polynomials of the form $z \mapsto
z^2 +c; c$ being a complex parameter. We discuss the importance of this
set and the universality, showing that copies of $M$ occur in many
other one parameter families of analytic maps, in particular that $M$
contains copies of itself.
En längre sammanfattning av föredraget finns här
Den 3 december håller Anders
Melin föredraget
Solitoner
En sammanfattning av föredraget finns här